材料科学
牛血清白蛋白
制作
原位
选择性
表征(材料科学)
纳米技术
化学工程
色谱法
有机化学
化学
催化作用
医学
工程类
病理
替代医学
作者
Lintao Yu,Bin Luo,Xiaoxi Zhou,Y Liu,Fang Lan,Yao Wu
标识
DOI:10.1021/acsami.1c13936
摘要
Highly efficient enrichment of phosphopeptides is of great significance for phosphoproteomics-related biological and pathological processes research, but it remains challenging due to the lack of affinity materials which hold high enrichment efficiency and capacity. Ti3C2Tx MXene, a novel two-dimensional material with outstanding physicochemical properties, has attracted wide research interests for application in various fields. However, there are few reports on the use of MXene-derived materials for phosphopeptides separation in the biomedical field. In this work, we proposed a facile one-pot method that in situ oxidation and modification of Ti3C2Tx MXene, to prepare two-dimensional (2D) magnetic Fe3O4/TiO2@Ti3C2Tx composites for potential application in phosphopeptides enrichment. Benefiting from the outstanding magnetic responsiveness and multiaffinity sites (Ti-O, Fe-O, and NH2 groups), the Fe3O4/TiO2@Ti3C2Tx composites possessed excellent enrichment performance with high sensitivity (0.1 fmol μL-1), excellent selectivity (β-casein: bovine serum albumin = 1:5000, molar ratio), good repeatability (5 times), and high enrichment capacity (200 mg g-1). Moreover, the results of selective enrichment of phosphopeptides from nonfat milk, human saliva, human serum, and rat brain lysates indicated the great potential of Fe3O4/TiO2@Ti3C2Tx composites in low-abundance phosphopeptides enrichment from complex biological samples. This work has put forward a versatile method to prepare magnetic MXene composites and promoted the use of MXene composites in phosphoproteome in biomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI