Unsupervised word embeddings capture latent knowledge from materials science literature

计算机科学 财产(哲学) 鉴定(生物学) 科学知识社会学 词(群论) 数据科学 知识抽取 点(几何) 表(数据库) 科学文献 情报检索 自然语言处理 人工智能 数据挖掘 语言学 认识论 生物 植物 哲学 古生物学 数学 几何学
作者
Vahe Tshitoyan,John Dagdelen,Leigh Weston,Alexander Dunn,Ziqin Rong,Olga Kononova,Kristin A. Persson,Gerbrand Ceder,Anubhav Jain
出处
期刊:Nature [Springer Nature]
卷期号:571 (7763): 95-98 被引量:784
标识
DOI:10.1038/s41586-019-1335-8
摘要

The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical analysis or modern machine learning methods. By contrast, the main source of machine-interpretable data for the materials research community has come from structured property databases1,2, which encompass only a small fraction of the knowledge present in the research literature. Beyond property values, publications contain valuable knowledge regarding the connections and relationships between data items as interpreted by the authors. To improve the identification and use of this knowledge, several studies have focused on the retrieval of information from scientific literature using supervised natural language processing3–10, which requires large hand-labelled datasets for training. Here we show that materials science knowledge present in the published literature can be efficiently encoded as information-dense word embeddings11–13 (vector representations of words) without human labelling or supervision. Without any explicit insertion of chemical knowledge, these embeddings capture complex materials science concepts such as the underlying structure of the periodic table and structure–property relationships in materials. Furthermore, we demonstrate that an unsupervised method can recommend materials for functional applications several years before their discovery. This suggests that latent knowledge regarding future discoveries is to a large extent embedded in past publications. Our findings highlight the possibility of extracting knowledge and relationships from the massive body of scientific literature in a collective manner, and point towards a generalized approach to the mining of scientific literature. Natural language processing algorithms applied to three million materials science abstracts uncover relationships between words, material compositions and properties, and predict potential new thermoelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freedom完成签到,获得积分10
1秒前
高高诗柳完成签到,获得积分10
1秒前
可爱的函函应助sbc采纳,获得10
2秒前
吴吴发布了新的文献求助10
3秒前
tuanheqi应助黄紫红采纳,获得30
3秒前
3秒前
manyi1972发布了新的文献求助10
3秒前
852应助cchen采纳,获得30
5秒前
Zert完成签到,获得积分10
8秒前
Jacob发布了新的文献求助10
8秒前
自由文博完成签到 ,获得积分10
9秒前
111完成签到,获得积分10
9秒前
9秒前
赘婿应助科研狗采纳,获得10
9秒前
buno应助略略略爱采纳,获得10
9秒前
10秒前
10秒前
10秒前
李爱国应助派大星不科研采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
金钰贝儿完成签到,获得积分10
15秒前
16秒前
科研通AI2S应助lvsehx采纳,获得10
17秒前
十四发布了新的文献求助30
18秒前
18秒前
18秒前
清爽文博完成签到,获得积分10
19秒前
19秒前
fenmiao完成签到,获得积分10
19秒前
勤奋的乐荷完成签到,获得积分10
20秒前
大喜完成签到,获得积分10
20秒前
21秒前
顺利可兰发布了新的文献求助10
22秒前
22秒前
ttxpx发布了新的文献求助10
22秒前
啊啊啊啊发布了新的文献求助10
23秒前
期待完成签到,获得积分10
23秒前
看看关注了科研通微信公众号
23秒前
CodeCraft应助喝杯水再走采纳,获得10
24秒前
派大星不科研完成签到,获得积分20
24秒前
高分求助中
Phase Relations in the System Nd-Fe-Cu 1000
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214800
求助须知:如何正确求助?哪些是违规求助? 2863342
关于积分的说明 8138279
捐赠科研通 2529519
什么是DOI,文献DOI怎么找? 1363743
科研通“疑难数据库(出版商)”最低求助积分说明 643908
邀请新用户注册赠送积分活动 616519