Unsupervised word embeddings capture latent knowledge from materials science literature

计算机科学 财产(哲学) 鉴定(生物学) 科学知识社会学 词(群论) 数据科学 知识抽取 点(几何) 表(数据库) 科学文献 情报检索 自然语言处理 人工智能 数据挖掘 语言学 认识论 生物 植物 哲学 古生物学 数学 几何学
作者
Vahe Tshitoyan,John Dagdelen,Leigh Weston,Alexander Dunn,Ziqin Rong,Olga Kononova,Kristin A. Persson,Gerbrand Ceder,Anubhav Jain
出处
期刊:Nature [Nature Portfolio]
卷期号:571 (7763): 95-98 被引量:870
标识
DOI:10.1038/s41586-019-1335-8
摘要

The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical analysis or modern machine learning methods. By contrast, the main source of machine-interpretable data for the materials research community has come from structured property databases1,2, which encompass only a small fraction of the knowledge present in the research literature. Beyond property values, publications contain valuable knowledge regarding the connections and relationships between data items as interpreted by the authors. To improve the identification and use of this knowledge, several studies have focused on the retrieval of information from scientific literature using supervised natural language processing3–10, which requires large hand-labelled datasets for training. Here we show that materials science knowledge present in the published literature can be efficiently encoded as information-dense word embeddings11–13 (vector representations of words) without human labelling or supervision. Without any explicit insertion of chemical knowledge, these embeddings capture complex materials science concepts such as the underlying structure of the periodic table and structure–property relationships in materials. Furthermore, we demonstrate that an unsupervised method can recommend materials for functional applications several years before their discovery. This suggests that latent knowledge regarding future discoveries is to a large extent embedded in past publications. Our findings highlight the possibility of extracting knowledge and relationships from the massive body of scientific literature in a collective manner, and point towards a generalized approach to the mining of scientific literature. Natural language processing algorithms applied to three million materials science abstracts uncover relationships between words, material compositions and properties, and predict potential new thermoelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Langsam发布了新的文献求助10
1秒前
1秒前
3秒前
薄荷心完成签到 ,获得积分10
4秒前
tt完成签到,获得积分10
4秒前
马里奥女士完成签到,获得积分10
5秒前
仿生人完成签到,获得积分10
5秒前
阿腾完成签到,获得积分10
5秒前
kosmos完成签到,获得积分10
6秒前
cdercder应助651采纳,获得20
7秒前
Katsuya完成签到,获得积分10
7秒前
顾矜应助自觉柠檬采纳,获得10
7秒前
Awei发布了新的文献求助10
7秒前
zougen发布了新的文献求助10
8秒前
9秒前
科研通AI5应助libobobo采纳,获得10
10秒前
revew666完成签到,获得积分10
10秒前
小王同学完成签到 ,获得积分10
11秒前
13秒前
14秒前
15秒前
18秒前
简单的元珊完成签到,获得积分10
20秒前
nn完成签到,获得积分10
20秒前
20秒前
萝卜猪发布了新的文献求助30
20秒前
22秒前
顾矜应助西门子云采纳,获得10
24秒前
尛海发布了新的文献求助10
25秒前
yubin.cao发布了新的文献求助10
25秒前
11111发布了新的文献求助10
25秒前
动漫大师发布了新的文献求助10
28秒前
Tina发布了新的文献求助10
28秒前
了了发布了新的文献求助10
30秒前
大个应助WillGUO采纳,获得10
32秒前
34秒前
尛海完成签到,获得积分10
36秒前
Tina完成签到,获得积分10
39秒前
情怀应助森诺采纳,获得10
40秒前
like发布了新的文献求助10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651941
求助须知:如何正确求助?哪些是违规求助? 3216150
关于积分的说明 9710764
捐赠科研通 2923893
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754152
科研通“疑难数据库(出版商)”最低求助积分说明 732977