Facilitating Human–Robot Collaborative Tasks by Teaching-Learning-Collaboration From Human Demonstrations

机器人 人机交互 计算机科学 工作区 人机交互 个人机器人 任务(项目管理) 人工智能 机器人学 机器人学习 移动机器人 工程类 系统工程
作者
Weitian Wang,Rui Li,Yi Chen,Z. Max Diekel,Yunyi Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 640-653 被引量:120
标识
DOI:10.1109/tase.2018.2840345
摘要

Collaborative robots are widely employed in strict hybrid assembly tasks involved in intelligent manufacturing. In this paper, we develop a teaching-learning-collaboration (TLC) model for the collaborative robot to learn from human demonstrations and assist its human partner in shared working situations. The human could program the robot using natural language instructions according to his/her personal working preferences via this approach. Afterward, the robot learns from human assembly demonstrations by taking advantage of the maximum entropy inverse reinforcement learning algorithm and updates its task-based knowledge using the optimal assembly strategy. In the collaboration process, the robot is able to leverage its learned knowledge to actively assist the human in the collaborative assembly task. Experimental results and analysis demonstrate that the proposed approach presents considerable robustness and applicability in human-robot collaborative tasks. Note to Practitioners-This paper is motivated by the human-robot collaborative assembly problem in the context of advanced manufacturing. Collaborative robotics makes a huge shift from the traditional robot-in-a-cage model to robots interacting with people in an open working environment. When the human works with the robot in the shared workspace, it is significant to lessen human programming effort and improve the human-robot collaboration efficiency once the task is updated. We develop a TLC model for the robot to learn from human demonstrations and assist its human partner in collaborative tasks. Once the task is changed, the human may code the robot via natural language instructions according to his/her personal working preferences. The robot can learn from human assembly demonstrations to update its task-based knowledge, which can be leveraged by the robot to actively assist the human to accomplish the collaborative task. We demonstrate the advantages of the proposed approach via a set of experiments in realistic human-robot collaboration contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南绿果果完成签到,获得积分10
刚刚
yang完成签到,获得积分10
1秒前
小鹏哥完成签到,获得积分10
1秒前
2秒前
芋芋完成签到,获得积分10
3秒前
FashionBoy应助baiweizi采纳,获得10
3秒前
小马甲应助山竹炖鸡爪采纳,获得10
3秒前
4秒前
Re关闭了Re文献求助
4秒前
爱学习的YY完成签到 ,获得积分10
4秒前
MS发布了新的文献求助10
4秒前
5秒前
mengwensi完成签到,获得积分10
5秒前
fu发布了新的文献求助10
5秒前
Hello应助靓丽的寒蕾采纳,获得10
6秒前
董怜寒发布了新的文献求助10
6秒前
6秒前
忆之完成签到,获得积分10
6秒前
7秒前
SciGPT应助勋xxx采纳,获得10
7秒前
稳重十三发布了新的文献求助20
7秒前
XHH1994发布了新的文献求助10
8秒前
乐乐应助怕黑以筠采纳,获得10
8秒前
tuntunliu完成签到,获得积分10
9秒前
罐罐发布了新的文献求助10
9秒前
9秒前
9秒前
李杍木发布了新的文献求助10
11秒前
11秒前
爱啥啥发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助cadnash采纳,获得10
11秒前
wangbq完成签到 ,获得积分10
11秒前
Re关闭了Re文献求助
11秒前
cinq001发布了新的文献求助30
12秒前
12秒前
丘比特应助芷莯采纳,获得10
12秒前
13秒前
李顺杰完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004