Facilitating Human–Robot Collaborative Tasks by Teaching-Learning-Collaboration From Human Demonstrations

机器人 人机交互 计算机科学 工作区 人机交互 个人机器人 任务(项目管理) 人工智能 机器人学 机器人学习 移动机器人 工程类 系统工程
作者
Weitian Wang,Rui Li,Yi Chen,Z. Max Diekel,Yunyi Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 640-653 被引量:120
标识
DOI:10.1109/tase.2018.2840345
摘要

Collaborative robots are widely employed in strict hybrid assembly tasks involved in intelligent manufacturing. In this paper, we develop a teaching-learning-collaboration (TLC) model for the collaborative robot to learn from human demonstrations and assist its human partner in shared working situations. The human could program the robot using natural language instructions according to his/her personal working preferences via this approach. Afterward, the robot learns from human assembly demonstrations by taking advantage of the maximum entropy inverse reinforcement learning algorithm and updates its task-based knowledge using the optimal assembly strategy. In the collaboration process, the robot is able to leverage its learned knowledge to actively assist the human in the collaborative assembly task. Experimental results and analysis demonstrate that the proposed approach presents considerable robustness and applicability in human-robot collaborative tasks. Note to Practitioners-This paper is motivated by the human-robot collaborative assembly problem in the context of advanced manufacturing. Collaborative robotics makes a huge shift from the traditional robot-in-a-cage model to robots interacting with people in an open working environment. When the human works with the robot in the shared workspace, it is significant to lessen human programming effort and improve the human-robot collaboration efficiency once the task is updated. We develop a TLC model for the robot to learn from human demonstrations and assist its human partner in collaborative tasks. Once the task is changed, the human may code the robot via natural language instructions according to his/her personal working preferences. The robot can learn from human assembly demonstrations to update its task-based knowledge, which can be leveraged by the robot to actively assist the human to accomplish the collaborative task. We demonstrate the advantages of the proposed approach via a set of experiments in realistic human-robot collaboration contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大观天下完成签到,获得积分10
1秒前
Marvi发布了新的文献求助10
2秒前
3秒前
酷波er应助大观天下采纳,获得10
4秒前
烟花应助trying采纳,获得10
5秒前
5秒前
8秒前
lyw完成签到 ,获得积分10
8秒前
yangmingyu完成签到,获得积分10
9秒前
迅速友容发布了新的文献求助10
10秒前
vippp完成签到 ,获得积分10
10秒前
13秒前
14秒前
15秒前
完美梨愁完成签到 ,获得积分10
15秒前
土豆丝发布了新的文献求助10
16秒前
大观天下发布了新的文献求助10
17秒前
17秒前
合适靖儿完成签到 ,获得积分10
18秒前
ww完成签到,获得积分10
20秒前
zhikaiyici应助科研通管家采纳,获得10
21秒前
21秒前
InfoNinja应助科研通管家采纳,获得30
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
22秒前
乐乐乐乐乐乐应助菜狗采纳,获得10
22秒前
23秒前
苏鱼完成签到 ,获得积分10
25秒前
啾啾发布了新的文献求助10
26秒前
26秒前
小虎完成签到,获得积分10
31秒前
31秒前
田様应助123采纳,获得10
33秒前
海带完成签到 ,获得积分10
33秒前
李爱国应助林克采纳,获得10
34秒前
温暖果汁发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905