Facilitating Human–Robot Collaborative Tasks by Teaching-Learning-Collaboration From Human Demonstrations

机器人 人机交互 计算机科学 工作区 人机交互 个人机器人 任务(项目管理) 人工智能 机器人学 机器人学习 移动机器人 工程类 系统工程
作者
Weitian Wang,Rui Li,Yi Chen,Z. Max Diekel,Yunyi Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 640-653 被引量:120
标识
DOI:10.1109/tase.2018.2840345
摘要

Collaborative robots are widely employed in strict hybrid assembly tasks involved in intelligent manufacturing. In this paper, we develop a teaching-learning-collaboration (TLC) model for the collaborative robot to learn from human demonstrations and assist its human partner in shared working situations. The human could program the robot using natural language instructions according to his/her personal working preferences via this approach. Afterward, the robot learns from human assembly demonstrations by taking advantage of the maximum entropy inverse reinforcement learning algorithm and updates its task-based knowledge using the optimal assembly strategy. In the collaboration process, the robot is able to leverage its learned knowledge to actively assist the human in the collaborative assembly task. Experimental results and analysis demonstrate that the proposed approach presents considerable robustness and applicability in human-robot collaborative tasks. Note to Practitioners-This paper is motivated by the human-robot collaborative assembly problem in the context of advanced manufacturing. Collaborative robotics makes a huge shift from the traditional robot-in-a-cage model to robots interacting with people in an open working environment. When the human works with the robot in the shared workspace, it is significant to lessen human programming effort and improve the human-robot collaboration efficiency once the task is updated. We develop a TLC model for the robot to learn from human demonstrations and assist its human partner in collaborative tasks. Once the task is changed, the human may code the robot via natural language instructions according to his/her personal working preferences. The robot can learn from human assembly demonstrations to update its task-based knowledge, which can be leveraged by the robot to actively assist the human to accomplish the collaborative task. We demonstrate the advantages of the proposed approach via a set of experiments in realistic human-robot collaboration contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助零零采纳,获得10
刚刚
星辰大海应助辣目童子采纳,获得10
刚刚
仿生人发布了新的文献求助10
1秒前
2秒前
囿于昼夜完成签到,获得积分10
3秒前
3秒前
邢文瑞发布了新的文献求助10
3秒前
4秒前
Orange应助橙子采纳,获得10
4秒前
ED应助坚定的语芙采纳,获得10
5秒前
5秒前
lzx应助小猛人采纳,获得50
5秒前
霏166发布了新的文献求助10
6秒前
7秒前
7秒前
dxk发布了新的文献求助10
8秒前
ding应助Hexagram采纳,获得10
8秒前
欢呼寒珊完成签到,获得积分10
9秒前
卡卡西应助glanceofwind采纳,获得20
9秒前
ss完成签到,获得积分10
9秒前
FashionBoy应助Cool采纳,获得10
9秒前
刺1656发布了新的文献求助10
10秒前
炙热雅琴发布了新的文献求助10
11秒前
大大大长腿完成签到,获得积分10
13秒前
Pepsi完成签到,获得积分10
13秒前
xuliangzheng完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
华仔应助wgr采纳,获得10
14秒前
15秒前
萧凌翠完成签到,获得积分20
16秒前
dxk完成签到,获得积分20
18秒前
20秒前
20秒前
22秒前
23秒前
香蕉觅云应助xuliangzheng采纳,获得10
23秒前
Hexagram发布了新的文献求助10
25秒前
yinggill完成签到 ,获得积分10
26秒前
帕丁顿发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496