已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Individual differences in learning social and nonsocial network structures.

心理学 认知心理学 社会学习 认知科学 计算机科学 教育学
作者
Steven H. Tompson,Ari E. Kahn,Emily B. Falk,Jean M. Vettel,Danielle S. Bassett
出处
期刊:Journal of Experimental Psychology: Learning, Memory and Cognition [American Psychological Association]
卷期号:45 (2): 253-271 被引量:18
标识
DOI:10.1037/xlm0000580
摘要

How do people acquire knowledge about which individuals belong to different cliques or communities? And to what extent does this learning process differ from the process of learning higher-order information about complex associations between nonsocial bits of information? Here, the authors use a paradigm in which the order of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex network. They examined individual differences in the ability to learn community structure of networks composed of social versus nonsocial stimuli. Although participants were able to learn community structure of both social and nonsocial networks, their performance in social network learning was uncorrelated with their performance in nonsocial network learning. In addition, social traits, including social orientation and perspective-taking, uniquely predicted the learning of social community structure but not the learning of nonsocial community structure. Taken together, the results suggest that the process of learning higher-order community structure in social networks is partially distinct from the process of learning higher-order community structure in nonsocial networks. The study design provides a promising approach to identify neurophysiological drivers of social network versus nonsocial network learning, extending knowledge about the impact of individual differences on these learning processes. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UU完成签到,获得积分10
1秒前
蓝天应助hxjnx采纳,获得10
2秒前
bkagyin应助Ccccd采纳,获得10
2秒前
Jing完成签到,获得积分20
3秒前
5秒前
尊敬的雪兰完成签到,获得积分20
5秒前
lemonyu完成签到 ,获得积分10
6秒前
9秒前
9秒前
10秒前
angel发布了新的文献求助10
12秒前
要减肥的胖子应助Dandy采纳,获得20
12秒前
氟锑酸完成签到 ,获得积分10
12秒前
ll完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
好看的花花鱼完成签到 ,获得积分10
14秒前
Someone发布了新的文献求助10
17秒前
19秒前
星空物语完成签到 ,获得积分10
19秒前
镜哥发布了新的文献求助10
20秒前
蓝胖子完成签到,获得积分10
20秒前
科研小白发布了新的文献求助10
20秒前
陈征完成签到,获得积分10
20秒前
球祝发布了新的文献求助10
21秒前
lhh7771117发布了新的文献求助10
21秒前
桐桐应助LBM采纳,获得10
22秒前
隐形曼青应助阳光豆芽采纳,获得10
22秒前
义气的代曼完成签到,获得积分10
23秒前
yali发布了新的文献求助10
23秒前
25秒前
26秒前
27秒前
受伤筝完成签到 ,获得积分10
29秒前
深情安青应助科研通管家采纳,获得10
30秒前
A_KAI应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
Novoa应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705395
求助须知:如何正确求助?哪些是违规求助? 5163352
关于积分的说明 15245053
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607656
邀请新用户注册赠送积分活动 1558822
关于科研通互助平台的介绍 1516347