频道(广播)
阻塞(统计)
极高频率
计算机科学
非视线传播
无线
蜂窝网络
电子工程
计算机网络
拓扑(电路)
电信
工程类
电气工程
作者
Margarita Gapeyenko,Andrey Samuylov,Mikhail Gerasimenko,Dmitri Moltchanov,Surinder Singh,Mustafa Riza Akdeniz,Ehsan Aryafar,Nageen Himayat,Sergey Andreev,Yevgeni Koucheryavy
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2017-11-01
卷期号:66 (11): 10124-10138
被引量:101
标识
DOI:10.1109/tvt.2017.2754543
摘要
Millimeter-wave (mmWave) propagation is known to be severely affected by the blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at shorter mmWave wavelengths such blockage can be caused by human bodies, where their mobility within environment makes wireless channel alternate between the blocked and non-blocked LoS states. Following the recent 3GPP requirements on modeling the dynamic blockage as well as the temporal consistency of the channel at mmWave frequencies, in this paper, a new model for predicting the state of a user in the presence of mobile blockers for representative 3GPP scenarios is developed: Urban micro cell street canyon and park/stadium/square. It is demonstrated that the blockage effects produce an alternating renewal process with exponentially distributed non-blocked intervals, and blocked durations that follow the general distribution. The following metrics are derived 1) the mean and the fraction of time spent in blocked/non-blocked state, 2) the residual blocked/non-blocked time, and 3) the time-dependent conditional probability of having blockage/no blockage at time t1 given that there was blockage/no blockage at time t0. The latter is a function of the arrival rate (intensity), width, and height of moving blockers, distance to the mmWave access point (AP), as well as the heights of the AP and the user device. The proposed model can be used for system-level characterization of mmWave cellular communication systems. For example, the optimal height and the maximum coverage radius of the mmWave APs are derived, while satisfying the required mean data rate constraint. The system-level simulations corroborate that the use of the proposed method considerably reduces the modeling complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI