An Approach of Filtering to Select IMFs of EEMD in Signal Processing for Acoustic Emission [AE] Sensors

声发射 声学 信号(编程语言) 希尔伯特-黄变换 计算机科学 信号处理 滤波器(信号处理) 噪音(视频) 模式(计算机接口)
作者
Nur Syakirah Mohd Jaafar,Izzatdin Abdul Aziz,Jafreezal Jaafar,Ahmad Kamil Mahmood
出处
期刊:Advances in intelligent systems and computing 卷期号:: 100-111 被引量:2
标识
DOI:10.1007/978-3-030-00184-1_10
摘要

The pipeline system is the important part in the media transportation for oil and gas transmission but due to weak maintenance, it leads to the corrosion, leakage stresses and mechanical damage of oil and gas pipelines. The signal processing is used to decompose the raw signal and analysis will be in time-frequency domain. Number of existing signal processing methods can be used for extracting useful information. However, the problem of signal processing method, essential to highlight the wanted information and attenuate the undesired signal is trivial. Several signal processing methods have been implemented to solve this issue. Research using Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other signal processing methods, especially in the accuracy showing the relationship between signal energy and time – frequency distribution by represents series of the stationary signals with different amplitudes and frequency bands. However, this EMD algorithm will still have noise contamination that may compromise the accuracy of the signal processing to highlight the wanted information. It is because the mode mixing phenomenon in the Intrinsic Mode Function’s (IMF) due to the undesirable signal with the mix of additional noise. There is still room for the improvement in the selective accuracy of the sensitive IMF after decomposition that can influence the correctness of feature extraction of the oxidized carbon steel. Using two data sets from the Acoustic Emission Sensors [AE], signal processing flows have been presented in this paper. Wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs. More experiments and simulation need to be carried out to get more result for leakage signature and localisation of defect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LMY完成签到 ,获得积分10
1秒前
李书荣发布了新的文献求助10
1秒前
温婉的香水完成签到 ,获得积分10
2秒前
充电宝应助无奈苡采纳,获得10
3秒前
QQ发布了新的文献求助10
3秒前
李书荣发布了新的文献求助10
3秒前
科研通AI5应助美满的菠萝采纳,获得10
6秒前
完美世界应助son采纳,获得10
6秒前
Tianling完成签到,获得积分0
7秒前
Ww发布了新的文献求助10
11秒前
12秒前
NexusExplorer应助kevin采纳,获得10
13秒前
从容的巧曼完成签到,获得积分10
13秒前
StandardR完成签到 ,获得积分10
13秒前
yifan92完成签到,获得积分10
14秒前
14秒前
shaft完成签到,获得积分10
17秒前
Winks完成签到,获得积分10
17秒前
燕燕于飞完成签到,获得积分10
17秒前
舒心的幻天完成签到,获得积分10
18秒前
含蓄妖丽发布了新的文献求助10
18秒前
19秒前
QQ完成签到,获得积分10
20秒前
20秒前
sowhat完成签到 ,获得积分10
21秒前
luoman5656完成签到,获得积分10
25秒前
AMENG完成签到,获得积分10
25秒前
Peng0514完成签到,获得积分10
26秒前
26秒前
29秒前
沧笙踏歌应助carbon采纳,获得10
30秒前
zhengly23发布了新的文献求助10
30秒前
马某发布了新的文献求助10
31秒前
丰富的小甜瓜完成签到,获得积分10
31秒前
李琛完成签到,获得积分10
32秒前
MM完成签到,获得积分10
32秒前
木木三发布了新的文献求助10
33秒前
科研通AI2S应助Yolo采纳,获得10
33秒前
鸡块面发布了新的文献求助10
34秒前
hahahaweiwei完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268