An Approach of Filtering to Select IMFs of EEMD in Signal Processing for Acoustic Emission [AE] Sensors

声发射 声学 信号(编程语言) 希尔伯特-黄变换 计算机科学 信号处理 滤波器(信号处理) 噪音(视频) 模式(计算机接口)
作者
Nur Syakirah Mohd Jaafar,Izzatdin Abdul Aziz,Jafreezal Jaafar,Ahmad Kamil Mahmood
出处
期刊:Advances in intelligent systems and computing 卷期号:: 100-111 被引量:2
标识
DOI:10.1007/978-3-030-00184-1_10
摘要

The pipeline system is the important part in the media transportation for oil and gas transmission but due to weak maintenance, it leads to the corrosion, leakage stresses and mechanical damage of oil and gas pipelines. The signal processing is used to decompose the raw signal and analysis will be in time-frequency domain. Number of existing signal processing methods can be used for extracting useful information. However, the problem of signal processing method, essential to highlight the wanted information and attenuate the undesired signal is trivial. Several signal processing methods have been implemented to solve this issue. Research using Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other signal processing methods, especially in the accuracy showing the relationship between signal energy and time – frequency distribution by represents series of the stationary signals with different amplitudes and frequency bands. However, this EMD algorithm will still have noise contamination that may compromise the accuracy of the signal processing to highlight the wanted information. It is because the mode mixing phenomenon in the Intrinsic Mode Function’s (IMF) due to the undesirable signal with the mix of additional noise. There is still room for the improvement in the selective accuracy of the sensitive IMF after decomposition that can influence the correctness of feature extraction of the oxidized carbon steel. Using two data sets from the Acoustic Emission Sensors [AE], signal processing flows have been presented in this paper. Wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs. More experiments and simulation need to be carried out to get more result for leakage signature and localisation of defect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨从安发布了新的文献求助10
2秒前
3秒前
研友_gnv61n应助DukeTao采纳,获得10
3秒前
hahhahahh完成签到,获得积分20
4秒前
6秒前
6秒前
6秒前
7秒前
充电宝应助小白鼠采纳,获得10
7秒前
7秒前
liu完成签到,获得积分10
9秒前
酷波er应助笨笨从安采纳,获得10
9秒前
9秒前
9秒前
10秒前
汉堡包应助安详雅青采纳,获得10
10秒前
怀火发布了新的文献求助10
12秒前
13秒前
YXH发布了新的文献求助10
14秒前
DT发布了新的文献求助10
15秒前
英姑应助Sean采纳,获得10
15秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
yy应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
万能图书馆应助云泽采纳,获得10
20秒前
今后应助peng采纳,获得10
20秒前
眼睛大的从雪完成签到,获得积分10
20秒前
20秒前
21秒前
瑾钰满糖发布了新的文献求助10
23秒前
只道寻常完成签到 ,获得积分10
23秒前
领导范儿应助我爱学习采纳,获得10
23秒前
caozhi完成签到,获得积分10
24秒前
小白鼠发布了新的文献求助10
25秒前
25秒前
乐乐应助繁荣的路灯采纳,获得10
25秒前
老宇发布了新的文献求助10
26秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218019
求助须知:如何正确求助?哪些是违规求助? 2867290
关于积分的说明 8155591
捐赠科研通 2534201
什么是DOI,文献DOI怎么找? 1366805
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617893