An Approach of Filtering to Select IMFs of EEMD in Signal Processing for Acoustic Emission [AE] Sensors

声发射 声学 信号(编程语言) 希尔伯特-黄变换 计算机科学 信号处理 滤波器(信号处理) 噪音(视频) 模式(计算机接口)
作者
Nur Syakirah Mohd Jaafar,Izzatdin Abdul Aziz,Jafreezal Jaafar,Ahmad Kamil Mahmood
出处
期刊:Advances in intelligent systems and computing 卷期号:: 100-111 被引量:2
标识
DOI:10.1007/978-3-030-00184-1_10
摘要

The pipeline system is the important part in the media transportation for oil and gas transmission but due to weak maintenance, it leads to the corrosion, leakage stresses and mechanical damage of oil and gas pipelines. The signal processing is used to decompose the raw signal and analysis will be in time-frequency domain. Number of existing signal processing methods can be used for extracting useful information. However, the problem of signal processing method, essential to highlight the wanted information and attenuate the undesired signal is trivial. Several signal processing methods have been implemented to solve this issue. Research using Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other signal processing methods, especially in the accuracy showing the relationship between signal energy and time – frequency distribution by represents series of the stationary signals with different amplitudes and frequency bands. However, this EMD algorithm will still have noise contamination that may compromise the accuracy of the signal processing to highlight the wanted information. It is because the mode mixing phenomenon in the Intrinsic Mode Function’s (IMF) due to the undesirable signal with the mix of additional noise. There is still room for the improvement in the selective accuracy of the sensitive IMF after decomposition that can influence the correctness of feature extraction of the oxidized carbon steel. Using two data sets from the Acoustic Emission Sensors [AE], signal processing flows have been presented in this paper. Wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs. More experiments and simulation need to be carried out to get more result for leakage signature and localisation of defect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HC完成签到 ,获得积分10
2秒前
姚姚的赵赵完成签到,获得积分10
2秒前
JamesPei应助大豪子采纳,获得30
3秒前
jy发布了新的文献求助10
3秒前
3秒前
陆靖易发布了新的文献求助10
3秒前
LQW完成签到,获得积分20
4秒前
5秒前
plant完成签到,获得积分10
5秒前
lyt完成签到,获得积分10
5秒前
6秒前
7秒前
敏感网络完成签到,获得积分20
8秒前
kh453发布了新的文献求助10
8秒前
8秒前
子爵木完成签到 ,获得积分10
8秒前
HC发布了新的文献求助30
9秒前
无限鞅发布了新的文献求助10
9秒前
SherlockLiu完成签到,获得积分20
9秒前
10秒前
吴岳发布了新的文献求助10
11秒前
陆靖易完成签到,获得积分10
11秒前
13秒前
Bella完成签到 ,获得积分10
13秒前
yhl发布了新的文献求助10
14秒前
15秒前
震动的乐天完成签到,获得积分10
16秒前
17秒前
18秒前
Hello应助xuanxuan采纳,获得10
19秒前
村长热爱美丽完成签到 ,获得积分10
19秒前
一衣完成签到,获得积分20
19秒前
19秒前
21秒前
明理世倌发布了新的文献求助10
21秒前
今后应助niu1采纳,获得10
22秒前
KONG发布了新的文献求助10
22秒前
爆米花应助成梦采纳,获得10
22秒前
yhl完成签到,获得积分20
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808