Algorithm for automatic EEG classification according to the epilepsy type: Benign focal childhood epilepsy and structural focal epilepsy

癫痫 脑电图 医学 发作性 癫痫发作 人工智能 模式识别(心理学) 计算机科学 立体脑电图
作者
Andrius Vytautas Misiukas Misiūnas,Tadas Meškauskas,Rūta Samaitienė
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:48: 118-127 被引量:16
标识
DOI:10.1016/j.bspc.2018.10.006
摘要

Abstract Rationale It is still not clear if there are EEG parameters that may be related to the epilepsy etiology in epilepsies presenting with rolandic spikes. Rolandic spikes are not pathognomonic for rolandic epilepsy and could be related to the area of discharges itself. The initial hypothesis was that even visually identical spikes have some difference, because of the different etiology. Objective The aim of the study was to find the differences in rolandic spike morphology in two epilepsy groups, different by etiology, but presenting with visually identical spikes. Methods A novel algorithm for automatic classification of interictal electroencephalogram (EEG) rolandic spikes according to the epilepsy type (Group I – patients with benign focal childhood epilepsy, self-limiting, with no causal lesion in the brain, Group II – patients with structural focal epilepsy) is proposed. The algorithm consists of three stages: 1) EEG spike detection, 2) determination of EEG spike parameters, 3) classification of EEG by epilepsy type based on estimated spike parameters. Automatic classification method is defined by artificial neural network. The algorithm has been trained and tested on a large data sample provided by Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos. Only those EEGs that were visually identical and inaccessible for manual clustering to the groups according the visual spike morphology and contained 50 or more spikes have been analyzed. Training and testing pools have been selected as non overlapping (containing different patients) data sets. Results The proposed methodology let us to achieve up to 75% of accuracy of classification of EEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
司空豁发布了新的文献求助10
1秒前
英姑应助兴奋的小笼包采纳,获得10
2秒前
kevin发布了新的文献求助10
3秒前
英姑应助mike采纳,获得10
3秒前
科研鲁宾孙完成签到,获得积分20
5秒前
盼盼法式小面包完成签到 ,获得积分10
7秒前
孙思怡发布了新的文献求助10
7秒前
8秒前
8秒前
李爱国应助娜娜子欧采纳,获得10
8秒前
11秒前
11秒前
慕青应助默默荔枝采纳,获得10
11秒前
yar应助心灵美从寒采纳,获得10
12秒前
Owen应助心灵美从寒采纳,获得10
12秒前
14秒前
白小白完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
mike发布了新的文献求助10
17秒前
17秒前
斜阳完成签到 ,获得积分10
18秒前
yhy完成签到 ,获得积分10
18秒前
lsn发布了新的文献求助10
19秒前
20秒前
传奇3应助kookery采纳,获得10
21秒前
21秒前
外向的聪健完成签到,获得积分10
22秒前
22秒前
娜娜子欧发布了新的文献求助10
22秒前
顺利的伊完成签到,获得积分10
22秒前
23秒前
Hey完成签到 ,获得积分10
23秒前
Lucas应助Mayday采纳,获得10
24秒前
DaYongDan完成签到 ,获得积分10
24秒前
25秒前
可爱的女孩子完成签到,获得积分10
25秒前
呜呜完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032