Algorithm for automatic EEG classification according to the epilepsy type: Benign focal childhood epilepsy and structural focal epilepsy

癫痫 脑电图 医学 发作性 癫痫发作 人工智能 模式识别(心理学) 计算机科学 立体脑电图
作者
Andrius Vytautas Misiukas Misiūnas,Tadas Meškauskas,Rūta Samaitienė
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:48: 118-127 被引量:16
标识
DOI:10.1016/j.bspc.2018.10.006
摘要

Abstract Rationale It is still not clear if there are EEG parameters that may be related to the epilepsy etiology in epilepsies presenting with rolandic spikes. Rolandic spikes are not pathognomonic for rolandic epilepsy and could be related to the area of discharges itself. The initial hypothesis was that even visually identical spikes have some difference, because of the different etiology. Objective The aim of the study was to find the differences in rolandic spike morphology in two epilepsy groups, different by etiology, but presenting with visually identical spikes. Methods A novel algorithm for automatic classification of interictal electroencephalogram (EEG) rolandic spikes according to the epilepsy type (Group I – patients with benign focal childhood epilepsy, self-limiting, with no causal lesion in the brain, Group II – patients with structural focal epilepsy) is proposed. The algorithm consists of three stages: 1) EEG spike detection, 2) determination of EEG spike parameters, 3) classification of EEG by epilepsy type based on estimated spike parameters. Automatic classification method is defined by artificial neural network. The algorithm has been trained and tested on a large data sample provided by Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos. Only those EEGs that were visually identical and inaccessible for manual clustering to the groups according the visual spike morphology and contained 50 or more spikes have been analyzed. Training and testing pools have been selected as non overlapping (containing different patients) data sets. Results The proposed methodology let us to achieve up to 75% of accuracy of classification of EEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不晚发布了新的文献求助10
1秒前
FashionBoy应助touka666采纳,获得20
1秒前
fqf发布了新的文献求助10
3秒前
3秒前
3秒前
朱瑶君完成签到,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
刘十一完成签到 ,获得积分10
4秒前
4秒前
麦田的守望者完成签到,获得积分10
4秒前
5秒前
5秒前
烟花应助美丽又莲采纳,获得10
6秒前
故酒应助小马采纳,获得10
6秒前
凯kai完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科研完成签到,获得积分10
8秒前
落后乘风完成签到 ,获得积分10
8秒前
zzz完成签到 ,获得积分10
8秒前
9秒前
9秒前
GY00发布了新的文献求助10
9秒前
扶风阁主发布了新的文献求助10
9秒前
peiyy完成签到,获得积分10
9秒前
10秒前
王葆蕾完成签到 ,获得积分10
11秒前
积极废物完成签到 ,获得积分10
11秒前
12秒前
12秒前
momo发布了新的文献求助10
12秒前
张小星发布了新的文献求助10
12秒前
549完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
SciGPT应助等待汉堡采纳,获得10
14秒前
陈腿毛发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943184
求助须知:如何正确求助?哪些是违规求助? 4208424
关于积分的说明 13082873
捐赠科研通 3987813
什么是DOI,文献DOI怎么找? 2183287
邀请新用户注册赠送积分活动 1198911
关于科研通互助平台的介绍 1111438