Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal

心房颤动 人工智能 稳健性(进化) 特征(语言学) 心脏超声心动图 模式识别(心理学) 计算机科学 医学 特征向量 深度学习 心律失常 心脏病学 哲学 化学 基因 生物化学 语言学
作者
Fangfang Jiang,Chuhang Hong,Tianqing Cheng,Haoqian Wang,Bowen Xu,Biyong Zhang
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:20 (1) 被引量:9
标识
DOI:10.1186/s12938-021-00848-w
摘要

Abstract Background Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. Method Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. Results 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. Conclusions The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
芋泥啵啵发布了新的文献求助10
刚刚
Loooong应助ycd采纳,获得10
刚刚
ttTINA完成签到,获得积分10
刚刚
擦书完成签到,获得积分10
1秒前
1秒前
1秒前
麦乐迪应助电催化丁真采纳,获得10
1秒前
1秒前
1秒前
2秒前
Cherry完成签到 ,获得积分10
2秒前
zr完成签到,获得积分10
2秒前
贪玩板凳完成签到,获得积分10
2秒前
3秒前
木木完成签到,获得积分10
3秒前
星辰大海应助林士采纳,获得10
3秒前
年轻的大叔关注了科研通微信公众号
3秒前
夕照古风发布了新的文献求助10
3秒前
yixing发布了新的文献求助10
3秒前
3秒前
巴黎的防发布了新的文献求助10
4秒前
一多完成签到 ,获得积分10
4秒前
yqzhang发布了新的文献求助10
4秒前
5秒前
5秒前
落雨声完成签到,获得积分10
5秒前
jinjing发布了新的文献求助10
5秒前
李健的小迷弟应助小白鼠采纳,获得30
5秒前
轻松思枫发布了新的文献求助10
5秒前
Hey完成签到 ,获得积分10
5秒前
ssssbbbb完成签到,获得积分10
6秒前
归尘应助虚幻的青槐采纳,获得10
6秒前
归尘应助虚幻的青槐采纳,获得10
6秒前
归尘应助虚幻的青槐采纳,获得10
6秒前
i3utter发布了新的文献求助10
6秒前
唯为发布了新的文献求助10
6秒前
荔枝吖发布了新的文献求助10
7秒前
sln完成签到,获得积分10
7秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149