已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal

心房颤动 人工智能 稳健性(进化) 特征(语言学) 心脏超声心动图 模式识别(心理学) 计算机科学 医学 特征向量 深度学习 心律失常 心脏病学 生物化学 化学 语言学 哲学 基因
作者
Fangfang Jiang,Chuhang Hong,Tianqing Cheng,Haoqian Wang,Bowen Xu,Biyong Zhang
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:20 (1) 被引量:9
标识
DOI:10.1186/s12938-021-00848-w
摘要

Abstract Background Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. Method Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. Results 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. Conclusions The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气幻丝完成签到,获得积分10
刚刚
LBJ23完成签到,获得积分10
1秒前
1秒前
长命百岁完成签到 ,获得积分10
2秒前
master-f完成签到 ,获得积分10
2秒前
悦耳短靴完成签到 ,获得积分10
2秒前
老武完成签到,获得积分10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
122319应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得80
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
4秒前
不可以哦完成签到 ,获得积分10
4秒前
etrh完成签到 ,获得积分10
4秒前
真实的瑾瑜完成签到 ,获得积分10
4秒前
鲤鱼寻菡完成签到 ,获得积分10
5秒前
6秒前
9秒前
忽远忽近的她完成签到 ,获得积分10
10秒前
疯狂的凡梦完成签到 ,获得积分10
10秒前
羊咩咩完成签到,获得积分10
10秒前
11秒前
泡面完成签到 ,获得积分10
11秒前
ZJX应助mobei采纳,获得10
12秒前
123456发布了新的文献求助10
12秒前
JY完成签到 ,获得积分10
12秒前
umi完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
14秒前
miketyson完成签到,获得积分10
15秒前
王猛发布了新的文献求助10
15秒前
科研通AI2S应助Jennifer采纳,获得10
16秒前
pp完成签到 ,获得积分10
18秒前
qhtwld完成签到,获得积分10
18秒前
18秒前
阿峤完成签到,获得积分10
19秒前
Owen应助黄鸿祥采纳,获得10
20秒前
miyier完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290747
求助须知:如何正确求助?哪些是违规求助? 4442048
关于积分的说明 13829071
捐赠科研通 4324837
什么是DOI,文献DOI怎么找? 2373882
邀请新用户注册赠送积分活动 1369248
关于科研通互助平台的介绍 1333323