清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal

心房颤动 人工智能 稳健性(进化) 特征(语言学) 心脏超声心动图 模式识别(心理学) 计算机科学 医学 特征向量 深度学习 心律失常 心脏病学 生物化学 化学 语言学 哲学 基因
作者
Fangfang Jiang,Chuhang Hong,Tianqing Cheng,Haoqian Wang,Bowen Xu,Biyong Zhang
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:20 (1) 被引量:9
标识
DOI:10.1186/s12938-021-00848-w
摘要

Abstract Background Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. Method Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. Results 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. Conclusions The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8KKkb8发布了新的文献求助10
2秒前
wangfaqing942完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
RC发布了新的文献求助10
2分钟前
老石完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分0
2分钟前
2分钟前
洗衣液谢完成签到 ,获得积分10
2分钟前
Yportne发布了新的文献求助10
2分钟前
Yportne完成签到,获得积分10
2分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
哭泣灯泡完成签到,获得积分10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
邢契发布了新的文献求助10
4分钟前
4分钟前
爆米花应助RC采纳,获得10
4分钟前
4分钟前
矜持完成签到 ,获得积分10
5分钟前
5分钟前
大盆完成签到,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
大盆发布了新的文献求助10
5分钟前
小马甲应助中原第一深情采纳,获得10
5分钟前
BowieHuang应助高兴的踏歌采纳,获得10
5分钟前
科研通AI6应助RC采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
LiShan完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633677
什么是DOI,文献DOI怎么找? 2532838
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733