Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal

心房颤动 人工智能 稳健性(进化) 特征(语言学) 心脏超声心动图 模式识别(心理学) 计算机科学 医学 特征向量 深度学习 心律失常 心脏病学 生物化学 化学 语言学 哲学 基因
作者
Fangfang Jiang,Chuhang Hong,Tianqing Cheng,Haoqian Wang,Bowen Xu,Biyong Zhang
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:20 (1) 被引量:9
标识
DOI:10.1186/s12938-021-00848-w
摘要

Abstract Background Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. Method Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. Results 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. Conclusions The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助安静含卉采纳,获得30
刚刚
wuxunxun2015发布了新的文献求助10
1秒前
3秒前
洵音完成签到,获得积分10
3秒前
Pull完成签到,获得积分10
3秒前
酷波er应助清风采纳,获得10
4秒前
4秒前
科研民工小叶完成签到 ,获得积分10
6秒前
很多奶油完成签到 ,获得积分10
6秒前
知菡完成签到,获得积分20
6秒前
7秒前
8秒前
faiting完成签到,获得积分10
8秒前
xixi应助有人喜欢蓝采纳,获得30
8秒前
10秒前
11秒前
moika完成签到,获得积分10
11秒前
核桃完成签到,获得积分0
12秒前
JHY完成签到,获得积分10
15秒前
一个大花瓶完成签到 ,获得积分10
16秒前
柳叶完成签到,获得积分10
16秒前
imchenyin完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
Hongtao完成签到 ,获得积分10
20秒前
情怀应助朴实的山灵采纳,获得10
20秒前
20秒前
邓凯月完成签到,获得积分10
21秒前
agility完成签到,获得积分10
21秒前
小马甲应助lxy采纳,获得10
21秒前
23秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
核桃发布了新的文献求助10
24秒前
Quhang完成签到,获得积分10
26秒前
lxy完成签到,获得积分20
27秒前
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084