Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal

心房颤动 人工智能 稳健性(进化) 特征(语言学) 心脏超声心动图 模式识别(心理学) 计算机科学 医学 特征向量 深度学习 心律失常 心脏病学 哲学 化学 基因 生物化学 语言学
作者
Fangfang Jiang,Chuhang Hong,Tianqing Cheng,Haoqian Wang,Bowen Xu,Biyong Zhang
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:20 (1) 被引量:9
标识
DOI:10.1186/s12938-021-00848-w
摘要

Abstract Background Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. Method Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. Results 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. Conclusions The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹简完成签到,获得积分10
刚刚
sober完成签到 ,获得积分10
2秒前
意明完成签到,获得积分10
4秒前
5秒前
懦弱的乐蕊完成签到 ,获得积分10
7秒前
xxx完成签到 ,获得积分10
8秒前
9秒前
不安的白昼完成签到 ,获得积分10
11秒前
glf完成签到,获得积分10
13秒前
文献互助1完成签到 ,获得积分10
13秒前
Vincent发布了新的文献求助10
14秒前
星弟完成签到 ,获得积分10
15秒前
羊羊爱吃羊羊完成签到 ,获得积分10
16秒前
科研通AI2S应助莫西莫西采纳,获得10
16秒前
wangzh完成签到,获得积分10
16秒前
17秒前
菠菜发布了新的文献求助50
17秒前
17秒前
Vincent完成签到,获得积分10
20秒前
暖阳发布了新的文献求助10
22秒前
22秒前
24秒前
24秒前
darui完成签到 ,获得积分10
24秒前
25秒前
velen完成签到,获得积分10
26秒前
LCC完成签到 ,获得积分10
26秒前
28秒前
希望天下0贩的0应助菠菜采纳,获得50
28秒前
28秒前
莫西莫西发布了新的文献求助10
29秒前
29秒前
Sevendesu完成签到,获得积分10
29秒前
无脚鸟完成签到,获得积分10
30秒前
31秒前
陈皮发布了新的文献求助10
31秒前
32秒前
OK完成签到,获得积分10
32秒前
wangzh发布了新的文献求助10
34秒前
小吃发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905