A 500-Fps Pan-Tilt Tracking System With Deep-Learning-Based Object Detection

计算机视觉 人工智能 计算机科学 帧速率 视频跟踪 跟踪(教育) 目标检测 跟踪系统 卷积神经网络 倾斜(摄像机) 对象(语法) 卡尔曼滤波器 模式识别(心理学) 数学 心理学 教育学 几何学
作者
Mingjun Jiang,Kohei Shimasaki,Shaopeng Hu,Taku Senoo,Idaku Ishii
出处
期刊:IEEE robotics and automation letters 卷期号:6 (2): 691-698 被引量:8
标识
DOI:10.1109/lra.2020.3048653
摘要

In this letter, we propose a fast mirror-drive pan-tilt target tracking system that can robustly track an object whose appearance varies in a complex background at 500 fps. By assuming a small image displacement between frames, which is a property of high-frame rate vision, we develop an fast object tracking algorithm by hybridizing the convolutional-neural-network (CNN) based object detection with template-matching (TM) based tracking operating at hundreds of frames per second (fps). For object tracking with high-speed visual feedback, the proposed tracking algorithm can remarkably reduce dozens-of-milliseconds-latency in the CNN-based object detection by simultaneously executing TM-based tracking for several images at consecutive frames within a few milliseconds. In the proposed pan-tilt tracking system, when the current tracked objects are occluded or out of the camera view, it can recognize objects to be newly tracked with CNN-based object detection at the rate of 33 fps with acceleration using graphic processing units (GPUs). Controlling the pan-tilt tracking system via visual feedback at 500 Hz, fast moving objects can be robustly tracked at the center of the camera view. The effectiveness of our method was experimentally demonstrated via several results when fast-moving pre-learned objects, such as toy cars were tracked in complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助梓榆采纳,获得10
1秒前
劼大大完成签到,获得积分10
1秒前
最优解完成签到 ,获得积分20
2秒前
2秒前
通~发布了新的文献求助10
2秒前
一段乐多完成签到,获得积分10
3秒前
3秒前
3秒前
给我找完成签到,获得积分10
4秒前
桐桐应助Yuki0616采纳,获得10
4秒前
小马甲应助鸣隐采纳,获得10
4秒前
ycd完成签到,获得积分10
5秒前
ark861023完成签到,获得积分10
5秒前
淡定问芙完成签到,获得积分10
5秒前
斯文败类应助惠惠采纳,获得10
6秒前
6秒前
Meowly完成签到,获得积分10
6秒前
7秒前
7秒前
陶醉觅夏发布了新的文献求助10
7秒前
pu完成签到,获得积分10
7秒前
小灵通完成签到,获得积分10
7秒前
给我找发布了新的文献求助10
7秒前
科研通AI2S应助LIn采纳,获得10
8秒前
gaga完成签到,获得积分10
8秒前
_Charmo完成签到,获得积分10
8秒前
Slemon完成签到,获得积分10
8秒前
谦谦姜完成签到,获得积分10
10秒前
11秒前
JINGZHANG发布了新的文献求助10
11秒前
11秒前
归海天与应助糊弄学专家采纳,获得10
11秒前
风中的青完成签到,获得积分10
12秒前
12秒前
12秒前
duxinyue关注了科研通微信公众号
13秒前
超级宇宙二踢脚关注了科研通微信公众号
13秒前
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794