Numerical Optimization of Key Design Parameters of a Thermoelectric Microfluidic Sensor for Ultrasensitive Detection of Biochemical Analytes

热电堆 材料科学 热电效应 热电冷却 散热片 微流控 量热计(粒子物理) 光电子学 热扩散率 灵敏度(控制系统) 热流密度 传热 电子工程 纳米技术 机械工程 机械 电气工程 红外线的 热力学 光学 探测器 物理 工程类
作者
Saif Mohammad Ishraq Bari,Louis G. Reis,Gergana G. Nestorova
出处
期刊:Journal of Thermal Science and Engineering Applications [ASME International]
卷期号:13 (2)
标识
DOI:10.1115/1.4047826
摘要

Abstract The design of highly sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports the design and fabrication of a continuous-flow biosensor with an integrated thermopile and three-dimensional numerical analysis of the critical design parameters that significantly increase the detection sensitivity of the platform. The paper discusses the impact of volumetric flowrate, channel height, material thermal properties, and heat sink on the magnitude of the thermoelectric signal. In the platform understudy, the heat generated by the enzymatic reaction between glucose oxidase-conjugated antibody and glucose is converted to an electric output by an antimony-bismuth thin-film thermopile with a theoretical Seebeck coefficient of 7.14 µV mK−1. Since this experimental configuration has been implemented in a various biochemical analysis, particular emphasis in this work is maximizing the detection sensitivity of the device. Computational thermal modeling was performed to investigate the impact of channel height (50 µm, 100 µm, 150 µm, and 200 µm), the volumetric flow rate of the substrate (25 µL min−1 and 50 µL min−1), and the microdevice material (glass, PMMA, and PDMS) on the output of the thermoelectric sensor. Experimental data validated the model and provided an excellent correlation between the predicted and measured voltage output. Results show that fabricating the calorimeter out of materials with lower thermal diffusivity, reducing the channel height, and eliminating the heat sink at the reference junction of the thermopile increases the sensitivity of the platform by 783%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助科研通管家采纳,获得20
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
852应助科研通管家采纳,获得10
刚刚
华仔应助高斯采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
刚刚
y741应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
完美世界应助诚心的以寒采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
Lily完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Aki_27发布了新的文献求助10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Hilda007应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
ad完成签到,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
GG应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488