Numerical Optimization of Key Design Parameters of a Thermoelectric Microfluidic Sensor for Ultrasensitive Detection of Biochemical Analytes

热电堆 材料科学 热电效应 热电冷却 散热片 微流控 量热计(粒子物理) 光电子学 热扩散率 灵敏度(控制系统) 热流密度 传热 电子工程 纳米技术 机械工程 机械 电气工程 红外线的 热力学 光学 探测器 物理 工程类
作者
Saif Mohammad Ishraq Bari,Louis G. Reis,Gergana G. Nestorova
出处
期刊:Journal of Thermal Science and Engineering Applications [ASME International]
卷期号:13 (2)
标识
DOI:10.1115/1.4047826
摘要

Abstract The design of highly sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports the design and fabrication of a continuous-flow biosensor with an integrated thermopile and three-dimensional numerical analysis of the critical design parameters that significantly increase the detection sensitivity of the platform. The paper discusses the impact of volumetric flowrate, channel height, material thermal properties, and heat sink on the magnitude of the thermoelectric signal. In the platform understudy, the heat generated by the enzymatic reaction between glucose oxidase-conjugated antibody and glucose is converted to an electric output by an antimony-bismuth thin-film thermopile with a theoretical Seebeck coefficient of 7.14 µV mK−1. Since this experimental configuration has been implemented in a various biochemical analysis, particular emphasis in this work is maximizing the detection sensitivity of the device. Computational thermal modeling was performed to investigate the impact of channel height (50 µm, 100 µm, 150 µm, and 200 µm), the volumetric flow rate of the substrate (25 µL min−1 and 50 µL min−1), and the microdevice material (glass, PMMA, and PDMS) on the output of the thermoelectric sensor. Experimental data validated the model and provided an excellent correlation between the predicted and measured voltage output. Results show that fabricating the calorimeter out of materials with lower thermal diffusivity, reducing the channel height, and eliminating the heat sink at the reference junction of the thermopile increases the sensitivity of the platform by 783%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英吉利25发布了新的文献求助10
3秒前
yzm完成签到,获得积分10
4秒前
lilei完成签到 ,获得积分10
4秒前
6秒前
6秒前
xiao发布了新的文献求助10
7秒前
7秒前
HanFeiZi完成签到 ,获得积分10
8秒前
8秒前
MLJ完成签到 ,获得积分10
9秒前
彩色尔珍发布了新的文献求助10
12秒前
Eureka发布了新的文献求助10
12秒前
开心发布了新的文献求助10
14秒前
酷酷的紫南完成签到 ,获得积分10
15秒前
CipherSage应助Evian79167采纳,获得30
15秒前
Ferry完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
zxt完成签到,获得积分10
19秒前
HAHA完成签到,获得积分10
20秒前
morning完成签到,获得积分10
20秒前
21秒前
水草帽完成签到 ,获得积分10
21秒前
21秒前
畅快的刚完成签到,获得积分10
23秒前
研友_LNMmW8发布了新的文献求助10
24秒前
25秒前
感谢大哥的帮助完成签到 ,获得积分10
27秒前
28秒前
天真的马里奥完成签到,获得积分10
28秒前
帅气男孩完成签到,获得积分10
29秒前
时笙发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
寒冷丹雪完成签到,获得积分10
33秒前
36秒前
xrrrr完成签到 ,获得积分10
37秒前
南楼小阁主完成签到,获得积分10
38秒前
Orange应助厚德载物采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587