Numerical Optimization of Key Design Parameters of a Thermoelectric Microfluidic Sensor for Ultrasensitive Detection of Biochemical Analytes

热电堆 材料科学 热电效应 热电冷却 散热片 微流控 量热计(粒子物理) 光电子学 热扩散率 灵敏度(控制系统) 热流密度 传热 电子工程 纳米技术 机械工程 机械 电气工程 红外线的 热力学 光学 探测器 物理 工程类
作者
Saif Mohammad Ishraq Bari,Louis G. Reis,Gergana G. Nestorova
出处
期刊:Journal of Thermal Science and Engineering Applications [ASME International]
卷期号:13 (2)
标识
DOI:10.1115/1.4047826
摘要

Abstract The design of highly sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports the design and fabrication of a continuous-flow biosensor with an integrated thermopile and three-dimensional numerical analysis of the critical design parameters that significantly increase the detection sensitivity of the platform. The paper discusses the impact of volumetric flowrate, channel height, material thermal properties, and heat sink on the magnitude of the thermoelectric signal. In the platform understudy, the heat generated by the enzymatic reaction between glucose oxidase-conjugated antibody and glucose is converted to an electric output by an antimony-bismuth thin-film thermopile with a theoretical Seebeck coefficient of 7.14 µV mK−1. Since this experimental configuration has been implemented in a various biochemical analysis, particular emphasis in this work is maximizing the detection sensitivity of the device. Computational thermal modeling was performed to investigate the impact of channel height (50 µm, 100 µm, 150 µm, and 200 µm), the volumetric flow rate of the substrate (25 µL min−1 and 50 µL min−1), and the microdevice material (glass, PMMA, and PDMS) on the output of the thermoelectric sensor. Experimental data validated the model and provided an excellent correlation between the predicted and measured voltage output. Results show that fabricating the calorimeter out of materials with lower thermal diffusivity, reducing the channel height, and eliminating the heat sink at the reference junction of the thermopile increases the sensitivity of the platform by 783%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mia发布了新的文献求助20
1秒前
女神金发布了新的文献求助60
1秒前
1秒前
puny完成签到,获得积分10
1秒前
1秒前
彭于晏应助zhonghbush采纳,获得10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
hmx完成签到,获得积分10
2秒前
忧郁的人英完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
xhy发布了新的文献求助10
2秒前
晴天霹雳3732完成签到,获得积分0
3秒前
carbonhan完成签到,获得积分10
3秒前
MJT10086完成签到,获得积分10
3秒前
3秒前
天天快乐应助阿楠采纳,获得10
4秒前
忧郁的听露完成签到,获得积分20
4秒前
宇文天川完成签到,获得积分10
5秒前
5秒前
三十三完成签到,获得积分10
5秒前
顾矜应助li采纳,获得10
5秒前
5秒前
久久发布了新的文献求助10
6秒前
蔡小葵完成签到 ,获得积分10
6秒前
6秒前
科目三应助cd采纳,获得10
7秒前
研友_LXOvq8完成签到,获得积分10
7秒前
xu完成签到,获得积分10
7秒前
祝雲发布了新的文献求助10
7秒前
鳗鱼灵寒完成签到 ,获得积分10
7秒前
8秒前
8秒前
从这完成签到,获得积分10
8秒前
乐乱发布了新的文献求助10
8秒前
铁匠完成签到,获得积分10
8秒前
8秒前
9秒前
慕青应助抓恐龙采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672