Deep-learning seismic full-waveform inversion for realistic structural models

反演(地质) 计算机科学 算法 波形 人工智能 地质学 地震学 电信 构造学 雷达
作者
Bin Liu,Senlin Yang,Yuxiao Ren,Xinji Xu,Peng Jiang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (1): R31-R44 被引量:71
标识
DOI:10.1190/geo2019-0435.1
摘要

Velocity model inversion is one of the most important tasks in seismic exploration. Full-waveform inversion (FWI) can obtain the highest resolution in traditional velocity inversion methods, but it heavily depends on initial models and is computationally expensive. In recent years, a large number of deep-learning (DL)-based velocity model inversion methods have been proposed. One critical component in those DL-based methods is a large training set containing different velocity models. We have developed a method to construct a realistic structural model for the DL network. Our compressional-wave velocity model building method for creating dense-layer/fault/salt body models can automatically construct a large number of models without much human effort, which is very meaningful for DL networks. Moreover, to improve the inversion result on these realistic structural models, instead of only using the common-shot gather, we also extract features from the common-receiver gather as well. Through a large number of realistic structural models, reasonable data acquisition methods, and appropriate network setups, a more generalized result can be obtained through our proposed inversion framework, which has been demonstrated to be effective on the independent testing data set. The results of dense-layer models, fault models, and salt body models that we compared and analyzed demonstrate the reliability of our method and also provide practical guidelines for choosing optimal inversion strategies in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
chemier027完成签到,获得积分10
4秒前
学术小钻风完成签到,获得积分20
4秒前
vikoel完成签到,获得积分10
4秒前
hayden完成签到,获得积分10
4秒前
77发布了新的文献求助20
5秒前
Deng完成签到,获得积分10
5秒前
深情安青应助JoshuaChen采纳,获得10
5秒前
Moscrol发布了新的文献求助10
6秒前
6秒前
黑天鹅完成签到,获得积分20
6秒前
冯宇关注了科研通微信公众号
6秒前
lin完成签到,获得积分10
6秒前
破晓完成签到,获得积分10
7秒前
8秒前
潇湘夜雨完成签到,获得积分10
8秒前
上官若男应助lane采纳,获得10
9秒前
黑天鹅发布了新的文献求助30
9秒前
科研小白完成签到,获得积分10
9秒前
neil发布了新的文献求助10
10秒前
岁月流年完成签到,获得积分10
10秒前
动听的靖琪完成签到,获得积分10
10秒前
ZhX完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
阿可阿可完成签到,获得积分10
12秒前
12秒前
桐桐应助maofeng采纳,获得10
13秒前
14秒前
ED应助李甄好采纳,获得10
14秒前
大模型应助李甄好采纳,获得10
14秒前
nkuwangkai发布了新的文献求助10
14秒前
SciGPT应助野原新之助采纳,获得10
15秒前
Jenaloe发布了新的文献求助10
15秒前
lsrlsr完成签到,获得积分10
16秒前
16秒前
大大怪发布了新的文献求助30
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582