Deep-learning seismic full-waveform inversion for realistic structural models

反演(地质) 计算机科学 算法 波形 人工智能 地质学 地震学 电信 构造学 雷达
作者
Bin Liu,Senlin Yang,Yuxiao Ren,Xinji Xu,Peng Jiang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (1): R31-R44 被引量:71
标识
DOI:10.1190/geo2019-0435.1
摘要

Velocity model inversion is one of the most important tasks in seismic exploration. Full-waveform inversion (FWI) can obtain the highest resolution in traditional velocity inversion methods, but it heavily depends on initial models and is computationally expensive. In recent years, a large number of deep-learning (DL)-based velocity model inversion methods have been proposed. One critical component in those DL-based methods is a large training set containing different velocity models. We have developed a method to construct a realistic structural model for the DL network. Our compressional-wave velocity model building method for creating dense-layer/fault/salt body models can automatically construct a large number of models without much human effort, which is very meaningful for DL networks. Moreover, to improve the inversion result on these realistic structural models, instead of only using the common-shot gather, we also extract features from the common-receiver gather as well. Through a large number of realistic structural models, reasonable data acquisition methods, and appropriate network setups, a more generalized result can be obtained through our proposed inversion framework, which has been demonstrated to be effective on the independent testing data set. The results of dense-layer models, fault models, and salt body models that we compared and analyzed demonstrate the reliability of our method and also provide practical guidelines for choosing optimal inversion strategies in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董浩应助宇文青寒采纳,获得10
刚刚
小二郎应助动听向彤采纳,获得10
1秒前
1秒前
红烧茄子完成签到,获得积分10
2秒前
2秒前
Wonderflu发布了新的文献求助20
2秒前
3秒前
TTTHANKS发布了新的文献求助10
4秒前
铁甲小宝完成签到,获得积分10
4秒前
李思超发布了新的文献求助220
5秒前
5秒前
夏天无完成签到,获得积分10
5秒前
5秒前
6秒前
soar发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
影子完成签到,获得积分10
9秒前
嘿哈发布了新的文献求助10
9秒前
9秒前
一苇莆发布了新的文献求助10
10秒前
11秒前
桐桐应助跳跃寻绿采纳,获得10
12秒前
李健应助潇涯采纳,获得50
13秒前
lingyan hu发布了新的文献求助10
13秒前
14秒前
14秒前
徐丹发布了新的文献求助10
15秒前
15秒前
充电宝应助why采纳,获得10
15秒前
15秒前
晚风发布了新的文献求助10
16秒前
17秒前
动听向彤发布了新的文献求助10
17秒前
dd发布了新的文献求助10
18秒前
CLL完成签到 ,获得积分10
18秒前
hu发布了新的文献求助10
19秒前
丰富天思发布了新的文献求助10
19秒前
乐乐应助2420574910采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706