材料科学
荧光粉
发光效率
光电子学
陶瓷
转换器
色温
二极管
复合材料
显色指数
光学
图层(电子)
功率(物理)
量子力学
物理
作者
Ping Huang,Beiying Zhou,Qi Zheng,Yuan Tian,Mengmeng Wang,Lianjun Wang,Jianlin Li,Wan Jiang
标识
DOI:10.1002/adma.201905951
摘要
Abstract Replacing traditional luminous silicone or resins with phosphor in ceramics (PiCs) as color converters has been proposed as an efficient way to improve thermal stability of high‐power white light‐emitting diodes (WLEDs). However, excessive light scattering in existing PiCs results in enormous phosphor‐converted light losses, which makes the luminosity of current PiCs color converters less efficient and means that they can only be used in devices working in reflective mode. By introducing nano wave plate structuring and Rayleigh scattering, luminous hydroxyapatite (HA)‐YAG: Ce ceramics are prepared from mesoporous HA nanorods and YAG: Ce phosphors at 850 °C, enabling for the first time WLEDs equipped with PiC color converters in transmission mode. With low‐temperature sintering and a highly transparent matrix, the quantum yield of HA‐YAG: Ce retains ≈90% of the raw phosphor, and WLEDs with the color converters exhibit a record luminous efficiency of 170 lm W −1 and a correlated color temperature below 4500 K. A facile and practical strategy of using nano structural modulation to eliminate birefringence‐induced light scattering for fabricating high‐performance ceramic converters suitable for multiple mode luminaires is demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI