Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals

模块化设计 合成生物学 模块化(生物学) 计算机科学 生化工程 代谢工程 代谢通量分析 代谢网络 系统生物学 分布式计算 计算生物学 生物 工程类 程序设计语言 新陈代谢 生物化学 内分泌学 遗传学
作者
Sergio Garcia,Cong T. Trinh
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:9 (7): 1665-1681 被引量:11
标识
DOI:10.1021/acssynbio.9b00518
摘要

Modular design is key to achieve efficient and robust systems across engineering disciplines. Modular design potentially offers advantages to engineer microbial systems for biocatalysis, bioremediation, and biosensing, overcoming the slow and costly design–build–test–learn cycles in the conventional cell engineering approach. These systems consist of a modular (chassis) cell compatible with exchangeable modules that enable programmed functions such as overproduction of a desirable chemical. We previously proposed a multiobjective optimization framework coupled with metabolic flux models to design modular cells and solved it using multiobjective evolutionary algorithms. However, such approach might not achieve solution optimality and hence limits design options for experimental implementation. In this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell, revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小馒头采纳,获得10
1秒前
高大宛完成签到,获得积分10
1秒前
qifeng完成签到,获得积分10
1秒前
火星上半仙关注了科研通微信公众号
2秒前
初秋发布了新的文献求助10
3秒前
夜倾心完成签到,获得积分10
5秒前
丘比特应助wulilz采纳,获得10
6秒前
6秒前
7秒前
回复对方完成签到,获得积分10
7秒前
SciGPT应助ljj722采纳,获得10
7秒前
xiaozhang完成签到 ,获得积分10
7秒前
7秒前
8秒前
t东流水完成签到,获得积分10
8秒前
effervescence发布了新的文献求助10
8秒前
是盐的学术号吖完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
NexusExplorer应助cuidalice采纳,获得20
9秒前
科研通AI6应助机灵垣采纳,获得10
10秒前
12秒前
rui发布了新的文献求助10
12秒前
12秒前
罗龙生完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
安详晓亦发布了新的文献求助10
13秒前
touka666发布了新的文献求助10
14秒前
14秒前
15秒前
LiangxuanPan发布了新的文献求助10
16秒前
leishenwang完成签到,获得积分10
16秒前
霸气紫槐发布了新的文献求助10
17秒前
顺利骁发布了新的文献求助10
17秒前
坚强若冰完成签到,获得积分10
17秒前
tom发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226