Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals

模块化设计 合成生物学 模块化(生物学) 计算机科学 生化工程 代谢工程 代谢通量分析 代谢网络 系统生物学 分布式计算 计算生物学 生物 工程类 程序设计语言 新陈代谢 生物化学 内分泌学 遗传学
作者
Sergio Garcia,Cong T. Trinh
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:9 (7): 1665-1681 被引量:11
标识
DOI:10.1021/acssynbio.9b00518
摘要

Modular design is key to achieve efficient and robust systems across engineering disciplines. Modular design potentially offers advantages to engineer microbial systems for biocatalysis, bioremediation, and biosensing, overcoming the slow and costly design–build–test–learn cycles in the conventional cell engineering approach. These systems consist of a modular (chassis) cell compatible with exchangeable modules that enable programmed functions such as overproduction of a desirable chemical. We previously proposed a multiobjective optimization framework coupled with metabolic flux models to design modular cells and solved it using multiobjective evolutionary algorithms. However, such approach might not achieve solution optimality and hence limits design options for experimental implementation. In this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell, revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助DreamerOj采纳,获得10
刚刚
比卜不完成签到 ,获得积分10
刚刚
用心若镜2发布了新的文献求助10
1秒前
Meng发布了新的文献求助10
2秒前
Xiaohui_Yu完成签到,获得积分10
2秒前
Li818发布了新的文献求助10
3秒前
郭郭发布了新的文献求助10
4秒前
4秒前
5秒前
shh完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
10秒前
不安的松完成签到 ,获得积分10
10秒前
10秒前
wxy发布了新的文献求助10
12秒前
destiny关注了科研通微信公众号
12秒前
彭于晏应助袅袅采纳,获得10
12秒前
无限青柏发布了新的文献求助10
13秒前
畅快的胡萝卜完成签到,获得积分10
13秒前
shu发布了新的文献求助10
13秒前
上官若男应助llya采纳,获得10
14秒前
DreamerOj发布了新的文献求助10
14秒前
14秒前
英姑应助水123采纳,获得10
15秒前
用心若镜2完成签到,获得积分10
15秒前
桐桐应助money采纳,获得10
15秒前
cxy发布了新的文献求助10
15秒前
theinu完成签到,获得积分10
17秒前
huang完成签到,获得积分10
18秒前
shuiyi发布了新的文献求助10
20秒前
Criminology34应助无限青柏采纳,获得10
20秒前
LLL完成签到,获得积分10
21秒前
maomao完成签到,获得积分10
21秒前
Lucas应助csl采纳,获得10
21秒前
yukang应助Amber采纳,获得10
22秒前
优美紫槐应助Zhuzhu采纳,获得20
23秒前
开朗完成签到,获得积分20
23秒前
七笙关注了科研通微信公众号
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814