Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals

模块化设计 合成生物学 模块化(生物学) 计算机科学 生化工程 代谢工程 代谢通量分析 代谢网络 系统生物学 分布式计算 计算生物学 生物 工程类 程序设计语言 新陈代谢 生物化学 内分泌学 遗传学
作者
Sergio Garcia,Cong T. Trinh
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:9 (7): 1665-1681 被引量:11
标识
DOI:10.1021/acssynbio.9b00518
摘要

Modular design is key to achieve efficient and robust systems across engineering disciplines. Modular design potentially offers advantages to engineer microbial systems for biocatalysis, bioremediation, and biosensing, overcoming the slow and costly design–build–test–learn cycles in the conventional cell engineering approach. These systems consist of a modular (chassis) cell compatible with exchangeable modules that enable programmed functions such as overproduction of a desirable chemical. We previously proposed a multiobjective optimization framework coupled with metabolic flux models to design modular cells and solved it using multiobjective evolutionary algorithms. However, such approach might not achieve solution optimality and hence limits design options for experimental implementation. In this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell, revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JC完成签到,获得积分10
2秒前
远航发布了新的文献求助10
3秒前
梅豆腐完成签到,获得积分20
4秒前
赘婿应助LLN采纳,获得10
4秒前
5秒前
hanguyu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
penglinhua完成签到,获得积分10
6秒前
大个应助女汉志采纳,获得10
6秒前
千与发布了新的文献求助10
8秒前
9秒前
10秒前
爆米花应助远航采纳,获得10
11秒前
Pendulium完成签到,获得积分10
12秒前
12秒前
刘金磊完成签到,获得积分10
12秒前
AoAoo发布了新的文献求助10
13秒前
14秒前
14秒前
英俊的铭应助monere采纳,获得30
14秒前
17秒前
17秒前
Wmy发布了新的文献求助10
17秒前
丘比特应助武雨珍采纳,获得10
17秒前
fei完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
苗佳威完成签到,获得积分10
20秒前
medai完成签到,获得积分10
20秒前
女汉志发布了新的文献求助10
22秒前
紫苏完成签到,获得积分10
23秒前
怀忑完成签到,获得积分10
24秒前
打打应助恰好采纳,获得10
25秒前
25秒前
乐乐应助。。采纳,获得10
26秒前
28秒前
所所应助aikka采纳,获得10
30秒前
30秒前
零知识完成签到 ,获得积分10
30秒前
zx完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299