Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals

模块化设计 合成生物学 模块化(生物学) 计算机科学 生化工程 代谢工程 代谢通量分析 代谢网络 系统生物学 分布式计算 计算生物学 生物 工程类 程序设计语言 新陈代谢 生物化学 内分泌学 遗传学
作者
Sergio Garcia,Cong T. Trinh
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:9 (7): 1665-1681 被引量:11
标识
DOI:10.1021/acssynbio.9b00518
摘要

Modular design is key to achieve efficient and robust systems across engineering disciplines. Modular design potentially offers advantages to engineer microbial systems for biocatalysis, bioremediation, and biosensing, overcoming the slow and costly design–build–test–learn cycles in the conventional cell engineering approach. These systems consist of a modular (chassis) cell compatible with exchangeable modules that enable programmed functions such as overproduction of a desirable chemical. We previously proposed a multiobjective optimization framework coupled with metabolic flux models to design modular cells and solved it using multiobjective evolutionary algorithms. However, such approach might not achieve solution optimality and hence limits design options for experimental implementation. In this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell, revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
11111完成签到,获得积分10
刚刚
刚刚
Archer完成签到,获得积分10
1秒前
hzh666发布了新的文献求助10
1秒前
木南发布了新的文献求助10
1秒前
香蕉觅云应助于冰清采纳,获得10
1秒前
Xiao完成签到,获得积分10
2秒前
谷云发布了新的文献求助10
3秒前
3秒前
小陈同学应助megumi采纳,获得10
3秒前
医院的孩子完成签到,获得积分10
3秒前
年轻海云发布了新的文献求助10
3秒前
无极微光应助震动的友琴采纳,获得20
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
5秒前
无限鸵鸟发布了新的文献求助10
5秒前
苹果不去想橘子的问题完成签到,获得积分10
6秒前
6秒前
大方从阳完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
向阳发布了新的文献求助10
8秒前
有魅力冰兰完成签到,获得积分20
8秒前
大方从阳发布了新的文献求助10
9秒前
辅助但上分完成签到,获得积分10
10秒前
张巨锋发布了新的文献求助10
11秒前
12秒前
12秒前
LChen发布了新的文献求助10
13秒前
13秒前
ichia发布了新的文献求助10
14秒前
调皮枫叶发布了新的文献求助10
15秒前
16秒前
无限鸵鸟完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
于胜男完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233