Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS)

侵染 植被(病理学) 小蠹虫 有害生物分析 树皮(声音) 环境科学 遥感 生物 林业 生态学 地理 园艺 医学 病理
作者
Langning Huo,Henrik Persson,Eva Lindberg
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112240-112240 被引量:104
标识
DOI:10.1016/j.rse.2020.112240
摘要

The European spruce bark beetle (Ips typographus [L.]) is one of the most damaging pest insects of European spruce forests. A crucial measure in pest control is the removal of infested trees before the beetles leave the bark, which generally happens before the end of June. However, stressed tree crowns do not show any significant color changes in the visible spectrum at this early-stage of infestation, making early detection difficult. In order to detect the related forest stress at an early stage, we investigated the differences in radar and spectral signals of healthy and stressed trees. How the characteristics of stressed trees changed over time was analyzed for the whole vegetation season, which covered the period before attacks (April), early-stage infestation (‘green-attacks’, May to July), and middle to late-stage infestation (August to October). The results show that spectral differences already existed at the beginning of the vegetation season, before the attacks. The spectral separability between the healthy and infested samples did not change significantly during the ‘green-attack’ stage. The results indicate that the trees were stressed before the attacks and had spectral signatures that differed from healthy ones. These stress-induced spectral changes could be more efficient indicators of early infestations than the ‘green-attack’ symptoms. In this study we used Sentinel-1 and 2 images of a test site in southern Sweden from April to October in 2018 and 2019. The red and SWIR bands from Sentinel-2 showed the highest separability of healthy and stressed samples. The backscatter from Sentinel-1 and additional bands from Sentinel-2 contributed only slightly in the Random Forest classification models. We therefore propose the Normalized Distance Red & SWIR (NDRS) index as a new index based on our observations and the linear relationship between the red and SWIR bands. This index identified stressed forest with accuracies from 0.80 to 0.88 before the attacks, from 0.80 to 0.82 in the early-stage infestation, and from 0.81 to 0.91 in middle- and late-stage infestations. These accuracies are higher than those attained by established vegetation indices aimed at ‘green-attack’ detection, such as the Normalized Difference Water Index, Ratio Drought Index, and Disease Stress Water Index. By using the proposed method, we highlight the potential of using NDRS with Sentinel-2 images to estimate forest vulnerability to European spruce bark beetle attacks early in the vegetation season.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
well发布了新的文献求助10
1秒前
坦率抽屉完成签到 ,获得积分10
1秒前
毛聋聋完成签到 ,获得积分10
2秒前
容与完成签到,获得积分10
2秒前
2秒前
lironghao发布了新的文献求助10
3秒前
wyw完成签到 ,获得积分10
3秒前
啦啦发布了新的文献求助10
6秒前
精明元霜应助天真书竹采纳,获得10
8秒前
_Forelsket_完成签到,获得积分10
8秒前
shanely完成签到,获得积分10
9秒前
kuny完成签到 ,获得积分10
10秒前
hdx完成签到 ,获得积分10
12秒前
13秒前
直率的乐萱完成签到 ,获得积分10
14秒前
在水一方应助Forest采纳,获得10
15秒前
JamesPei应助ganchao1776采纳,获得10
17秒前
浅尝离白应助河马采纳,获得10
17秒前
朱zhu发布了新的文献求助10
19秒前
19秒前
顾矜应助healthy采纳,获得10
19秒前
大林发布了新的文献求助10
21秒前
22秒前
23秒前
别介完成签到,获得积分10
25秒前
ajin完成签到,获得积分10
25秒前
26秒前
英姑应助朱zhu采纳,获得10
27秒前
hoho发布了新的文献求助30
27秒前
科研柠檬精酸酸完成签到,获得积分10
27秒前
河马发布了新的文献求助10
28秒前
FXT完成签到 ,获得积分10
28秒前
August完成签到,获得积分10
29秒前
清脆金鱼完成签到,获得积分10
30秒前
Yaoz发布了新的文献求助10
33秒前
33秒前
34秒前
脑洞疼应助ludy采纳,获得10
36秒前
no1isme完成签到 ,获得积分10
36秒前
hokuto应助虚幻的又蓝采纳,获得10
37秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620