Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS)

侵染 植被(病理学) 小蠹虫 有害生物分析 树皮(声音) 环境科学 遥感 生物 林业 生态学 地理 园艺 医学 病理
作者
Langning Huo,Henrik Persson,Eva Lindberg
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112240-112240 被引量:104
标识
DOI:10.1016/j.rse.2020.112240
摘要

The European spruce bark beetle (Ips typographus [L.]) is one of the most damaging pest insects of European spruce forests. A crucial measure in pest control is the removal of infested trees before the beetles leave the bark, which generally happens before the end of June. However, stressed tree crowns do not show any significant color changes in the visible spectrum at this early-stage of infestation, making early detection difficult. In order to detect the related forest stress at an early stage, we investigated the differences in radar and spectral signals of healthy and stressed trees. How the characteristics of stressed trees changed over time was analyzed for the whole vegetation season, which covered the period before attacks (April), early-stage infestation (‘green-attacks’, May to July), and middle to late-stage infestation (August to October). The results show that spectral differences already existed at the beginning of the vegetation season, before the attacks. The spectral separability between the healthy and infested samples did not change significantly during the ‘green-attack’ stage. The results indicate that the trees were stressed before the attacks and had spectral signatures that differed from healthy ones. These stress-induced spectral changes could be more efficient indicators of early infestations than the ‘green-attack’ symptoms. In this study we used Sentinel-1 and 2 images of a test site in southern Sweden from April to October in 2018 and 2019. The red and SWIR bands from Sentinel-2 showed the highest separability of healthy and stressed samples. The backscatter from Sentinel-1 and additional bands from Sentinel-2 contributed only slightly in the Random Forest classification models. We therefore propose the Normalized Distance Red & SWIR (NDRS) index as a new index based on our observations and the linear relationship between the red and SWIR bands. This index identified stressed forest with accuracies from 0.80 to 0.88 before the attacks, from 0.80 to 0.82 in the early-stage infestation, and from 0.81 to 0.91 in middle- and late-stage infestations. These accuracies are higher than those attained by established vegetation indices aimed at ‘green-attack’ detection, such as the Normalized Difference Water Index, Ratio Drought Index, and Disease Stress Water Index. By using the proposed method, we highlight the potential of using NDRS with Sentinel-2 images to estimate forest vulnerability to European spruce bark beetle attacks early in the vegetation season.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aloysia发布了新的文献求助10
1秒前
yys10l完成签到,获得积分10
2秒前
MRu发布了新的文献求助50
2秒前
2秒前
CipherSage应助阿伟采纳,获得10
3秒前
丘比特应助Xin采纳,获得10
3秒前
小柴发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
今后应助jixia采纳,获得10
6秒前
23关闭了23文献求助
6秒前
搞点学术完成签到 ,获得积分10
7秒前
8秒前
9秒前
HANXIA完成签到,获得积分10
9秒前
9秒前
10秒前
研友_nxy9XZ完成签到,获得积分10
11秒前
11秒前
11秒前
cyz完成签到,获得积分10
12秒前
ChenChen发布了新的文献求助10
14秒前
苏小安发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
cyz发布了新的文献求助20
15秒前
旺旺饼干发布了新的文献求助10
16秒前
kyouu发布了新的文献求助10
16秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
张国强发布了新的文献求助10
20秒前
贪玩板栗发布了新的文献求助10
20秒前
小冰完成签到,获得积分10
20秒前
20秒前
依兰飞舞完成签到,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465