Adaptation and Adverse Selection in Markets for Natural Disaster Insurance

逆向选择 适应(眼睛) 自然灾害 选择(遗传算法) 自然选择 精算学 业务 计算机科学 地理 生物 人工智能 气象学 神经科学
作者
Katherine Wagner
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:6
标识
DOI:10.2139/ssrn.3467329
摘要

This paper studies social welfare in markets for natural disaster insurance. I quantify frictions in uptake, test for adverse selection, and estimate the welfare effects of proposed policy reforms by developing a model of natural disaster insurance markets and compiling new data. The paper has three main findings. First, willingness to pay for natural disaster insurance is remarkably low. In the high-risk flood zones throughout all U.S. Atlantic and Gulf Coast states, fewer than 60% of homeowners purchase flood insurance even though subsidized premia are only two-thirds of their own expected payouts. Second, homeowners select into insurance based on observable differences in houses' defensive investments against natural disasters (i.e., adaptation), but not on private information about risk. Exploiting house-level variation in flood insurance prices and construction codes reveals that requirements to elevate newly constructed homes reduce insurer costs by 31% and insurance demand by 25%. Asymmetric information between homeowners and insurers, however, does not affect average payouts. Third, ignoring how frictions, such as risk misperception, distort demand understates the welfare cost of currently proposed price increases and changes the sign of the predicted welfare effect. In the presence of such frictions, enforcing a natural disaster insurance mandate increases social welfare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王w发布了新的文献求助10
1秒前
yyyyy完成签到,获得积分10
2秒前
2秒前
大侠发布了新的文献求助10
2秒前
魁梧的乐天完成签到,获得积分20
2秒前
冯度翩翩完成签到,获得积分10
3秒前
科研通AI2S应助satchzhao采纳,获得10
3秒前
jijizz完成签到,获得积分10
4秒前
一一发布了新的文献求助10
4秒前
小马甲应助ChiDaiOLD采纳,获得10
4秒前
4秒前
鳗鱼灵寒发布了新的文献求助10
5秒前
shatang发布了新的文献求助10
5秒前
lesyeuxdexx完成签到 ,获得积分10
7秒前
8秒前
程琳完成签到,获得积分20
9秒前
10秒前
卓哥发布了新的文献求助10
10秒前
科研通AI5应助sansan采纳,获得10
11秒前
11秒前
11秒前
脑洞疼应助杰森斯坦虎采纳,获得10
11秒前
13秒前
14秒前
研友_QQC完成签到,获得积分10
14秒前
NeuroWhite完成签到,获得积分10
14秒前
14秒前
搜索v完成签到,获得积分10
15秒前
liuchuck完成签到 ,获得积分10
15秒前
15秒前
15秒前
猫独秀完成签到,获得积分10
15秒前
17秒前
buno应助yuefeng采纳,获得10
17秒前
yiming完成签到,获得积分10
17秒前
落落发布了新的文献求助10
18秒前
清秋若月完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808