A hybrid feature selection method based on information theory and binary butterfly optimization algorithm

计算机科学 特征选择 冗余(工程) 算法 二进制数 人工智能 模式识别(心理学) 特征(语言学) 相互信息 排名(信息检索) 数据挖掘 数学 语言学 算术 操作系统 哲学
作者
Zohre Sadeghian,Ebrahim Akbari,Hossein Nematzadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:97: 104079-104079 被引量:120
标识
DOI:10.1016/j.engappai.2020.104079
摘要

Feature selection is the problem of finding the optimal subset of features for predicting class labels by removing irrelevant or redundant features. S-shaped Binary Butterfly Optimization Algorithm (S-bBOA) is a nature-inspired algorithm for solving the feature selection problems. The evidence shows that S-bBOA has a better performance in exploration, exploitation, convergence, and avoidance of getting stuck in local optimal compared to other optimization algorithms. However, S-bBOA does not consider redundancy and relevancy of features. This paper proposes Information Gain binary Butterfly Optimization Algorithm (IG-bBOA), to overcome the S-bBOA constraints firstly. IG-bBOA maximizes both the classification accuracy and the mean of the mutual information between features and class labels. In addition, IG-bBOA also tries to minimize the number of selected features and is used within a three-phase proposed method called Ensemble Information Theory based binary Butterfly Optimization Algorithm (EIT-bBOA). In the first phase, 80% of irrelevant and redundant features are removed using Minimal Redundancy-Maximal New Classification Information (MR-MNCI) feature selection. In the second phase, the best feature subset is selected using IG-bBOA. Finally, a similarity based ranking method is used to select the final features subset. The experimental results are conducted using six standard datasets from UCI repository. The findings confirm the efficiency of the proposed method in improving the classification accuracy and selecting the best optimal features subset with minimum number of feature in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助认真柜子采纳,获得10
刚刚
FashionBoy应助薇薇安采纳,获得10
刚刚
科研通AI5应助欢呼妙菱采纳,获得10
1秒前
霸气鞯完成签到 ,获得积分10
1秒前
xxcarry完成签到 ,获得积分10
1秒前
1秒前
rlix发布了新的文献求助10
2秒前
个性梦蕊发布了新的文献求助10
2秒前
欣欣发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
Jasper应助俏皮的鞋垫采纳,获得10
4秒前
默默水之完成签到,获得积分10
4秒前
5秒前
22发布了新的文献求助10
5秒前
carrier_hc完成签到,获得积分10
6秒前
fairy完成签到,获得积分10
6秒前
Jiang发布了新的文献求助10
6秒前
ganchao1776完成签到,获得积分10
8秒前
小蘑菇应助兜兜窦采纳,获得30
8秒前
褚恋风完成签到 ,获得积分10
8秒前
窝的小卷毛完成签到,获得积分10
8秒前
环游水星发布了新的文献求助10
8秒前
8秒前
无私的珩发布了新的文献求助10
8秒前
清爽秋荷发布了新的文献求助10
9秒前
酷波er应助踏雪无痕采纳,获得10
9秒前
屋里陈陈发布了新的文献求助10
9秒前
HYI完成签到,获得积分10
9秒前
9秒前
胡柱柱完成签到,获得积分10
10秒前
10秒前
chenyunxia完成签到,获得积分10
11秒前
EnaFo完成签到,获得积分10
12秒前
ganchao1776发布了新的文献求助10
12秒前
12秒前
烟花应助Zhuhaimao采纳,获得10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635