Deep Reinforcement Learning-Based Irrigation Scheduling

强化学习 灌溉调度 计算机科学 人工智能 灌溉 调度(生产过程) 蒸散量 学习分类器系统 机器学习 农业工程 数学优化 工程类 数学 生态学 生物
作者
Yanxiang Yang,Jiang Hu,Dana Porter,Thomas Marek,Kevin Heflin,Hongxin Kong
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:63 (3): 549-556 被引量:19
标识
DOI:10.13031/trans.13633
摘要

Highlights Deep reinforcement learning-based irrigation scheduling is proposed to determine the amount of irrigation required at each time step considering soil moisture level, evapotranspiration, forecast precipitation, and crop growth stage. The proposed methodology was compared with traditional irrigation scheduling approaches and some machine learning based scheduling approaches based on simulation. Abstract. Machine learning has been widely applied in many areas, with promising results and large potential. In this article, deep reinforcement learning-based irrigation scheduling is proposed. This approach can automate the irrigation process and can achieve highly precise water application that results in higher simulated net return. Using this approach, the irrigation controller can automatically determine the optimal or near-optimal water application amount. Traditional reinforcement learning can be superior to traditional periodic and threshold-based irrigation scheduling. However, traditional reinforcement learning fails to accurately represent a real-world irrigation environment due to its limited state space. Compared with traditional reinforcement learning, the deep reinforcement learning method can better model a real-world environment based on multi-dimensional observations. Simulations for various weather conditions and crop types show that the proposed deep reinforcement learning irrigation scheduling can increase net return. Keywords: Automated irrigation scheduling, Deep reinforcement learning, Machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_仇颤完成签到,获得积分10
2秒前
hhhhh完成签到 ,获得积分10
2秒前
Singularity应助NZH采纳,获得20
3秒前
3秒前
小杨爱科研完成签到,获得积分10
4秒前
4秒前
不能让发布了新的文献求助10
4秒前
希望天下0贩的0应助牛牛采纳,获得10
6秒前
彳亍1117应助不安的夜柳采纳,获得20
6秒前
baibai完成签到,获得积分10
6秒前
girl完成签到,获得积分10
6秒前
赵欣发布了新的文献求助10
7秒前
8秒前
上官发布了新的文献求助10
9秒前
10秒前
小蘑菇应助可燃冰采纳,获得10
10秒前
yyyyy发布了新的文献求助10
10秒前
11秒前
13秒前
李至安发布了新的文献求助10
13秒前
13秒前
HRX发布了新的文献求助30
13秒前
13秒前
14秒前
李欣荣发布了新的文献求助10
16秒前
asdfj应助酥小苏采纳,获得20
16秒前
yang应助北譩采纳,获得10
17秒前
maomao1986完成签到,获得积分10
17秒前
明亮的妙芙完成签到,获得积分20
17秒前
王者归来完成签到,获得积分10
18秒前
熊二浪发布了新的文献求助10
18秒前
李子木完成签到 ,获得积分0
19秒前
19秒前
Neonoes发布了新的文献求助10
20秒前
jellyfish完成签到,获得积分10
20秒前
共享精神应助林厌寻采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608