Screening of Significant Biomarkers Related to Prognosis of Cervical Cancer and Functional Study Based on lncRNA-associated ceRNA Regulatory Network

竞争性内源性RNA 列线图 小RNA 宫颈癌 生存分析 计算生物学 接收机工作特性 小桶 生物标志物 肿瘤科 生物 基因 癌症 医学 核糖核酸 癌症研究 长非编码RNA 生物信息学 微阵列 基因表达 内科学 遗传学 转录组
作者
Ding Haiyan,Zhang Li,Zhang Chunmiao,Jie Song,Jiang Ying
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:24 (3): 472-482 被引量:4
标识
DOI:10.2174/1386207323999200729113028
摘要

Background: Cervical cancer (CESC), which threatens the health of women, has a very high recurrence rate. Purposes: This study aimed to identify the signature long non-coding RNAs (lncRNAs) associated with the prognosis of CESC and predict the prognostic survival rate with the clinical risk factors. Methods: The CESC gene expression profiling data were downloaded from TCGA database and NCBI Gene Expression Omnibus. Afterwards, the differentially expressed RNAs (DERs) were screened using limma package of R software. R package “survival” was then used to screen the signature lncRNAs associated with independently recurrence prognosis, and a nomogram recurrence rate model based on these signature lncRNAs was constructed to predict the 3-year and 5-year survival probability of CESC. Finally, a competing endogenous RNAs (ceRNA) regulatory network was proposed to study the functions of these genes. Results: We obtained 305 DERs significantly associated with prognosis. Afterwards, a risk score (RS) prediction model was established using the screened 5 signature lncRNAs associated with independently recurrence prognosis (DLEU1, LINC01119, RBPMS-AS1, RAD21-AS1 and LINC00323). Subsequently, a nomogram recurrence rate model, proposed with Pathologic N and RS model status, was found to have a good prediction ability for CESC. In ceRNA regulatory network, LINC00323 and DLEU1 were hub nodes which targeted more miRNAs and mRNAs. After that, 15 GO terms and 3 KEGG pathways were associated with recurrence prognosis and showed that the targeted genes PTK2, NRP1, PRKAA1 and HMGCS1 might influence the prognosis of CESC. Conclusion: The signature lncRNAs can help improve our understanding of the development and recurrence of CESC and the nomogram recurrence rate model can be applied to predict the survival rate of CESC patients in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YDY完成签到,获得积分10
1秒前
CipherSage应助KEHUGE采纳,获得10
2秒前
4秒前
4秒前
化合物来完成签到,获得积分10
5秒前
独徙发布了新的文献求助10
6秒前
欣喜紫真完成签到,获得积分10
7秒前
7秒前
毛豆应助和谐的果汁采纳,获得30
8秒前
科目三应助hetao286采纳,获得10
9秒前
大雯仔发布了新的文献求助10
9秒前
plasticsci关注了科研通微信公众号
10秒前
13秒前
爆米花应助pla采纳,获得10
15秒前
LiM发布了新的文献求助10
16秒前
SciGPT应助zmk采纳,获得10
18秒前
Mor711完成签到,获得积分10
18秒前
研友_LX665Z完成签到,获得积分10
18秒前
ynn发布了新的文献求助10
18秒前
19秒前
21秒前
花痴的白筠完成签到,获得积分10
21秒前
JXXX发布了新的文献求助10
21秒前
21秒前
Lucas应助LiM采纳,获得10
22秒前
停停完成签到,获得积分10
22秒前
情怀应助Robust采纳,获得10
22秒前
沉默的企鹅完成签到,获得积分20
25秒前
优雅沛文完成签到 ,获得积分10
26秒前
停停发布了新的文献求助10
27秒前
Robust完成签到,获得积分10
28秒前
29秒前
29秒前
毛豆应助ynn采纳,获得10
30秒前
31秒前
酷波er应助zxkk采纳,获得10
31秒前
Crema完成签到,获得积分10
32秒前
32秒前
li发布了新的文献求助10
32秒前
鸭梨发布了新的文献求助10
33秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463119
求助须知:如何正确求助?哪些是违规求助? 3056538
关于积分的说明 9052742
捐赠科研通 2746421
什么是DOI,文献DOI怎么找? 1506925
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695791