亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI

医学 结直肠癌 峰度 放化疗 磁共振成像 磁共振弥散成像 完全响应 内科学 新辅助治疗 放射科 癌症 放射治疗 乳腺癌 化疗 数学 统计
作者
Xiaoyan Zhang,Lin Wang,Haitao Zhu,Zhongwu Li,Meng Ye,Xiao-Ting Li,Yan‐Jie Shi,Huici Zhu,Ying‐Shi Sun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 56-64 被引量:79
标识
DOI:10.1148/radiol.2020190936
摘要

Background Preoperative response evaluation with neoadjuvant chemoradiotherapy remains a challenge in the setting of locally advanced rectal cancer. Recently, deep learning (DL) has been widely used in tumor diagnosis and treatment and has produced exciting results. Purpose To develop and validate a DL method to predict response of rectal cancer to neoadjuvant therapy based on diffusion kurtosis and T2-weighted MRI. Materials and Methods In this prospective study, participants with locally advanced rectal adenocarcinoma (≥cT3 or N+) proved at histopathology and baseline MRI who were scheduled to undergo preoperative chemoradiotherapy were enrolled from October 2015 to December 2017 and were chronologically divided into 308 training samples and 104 test samples. DL models were constructed primarily to predict pathologic complete response (pCR) and secondarily to assess tumor regression grade (TRG) (TRG0 and TRG1 vs TRG2 and TRG3) and T downstaging. Other analysis included comparisons of diffusion kurtosis MRI parameters and subjective evaluation by radiologists. Results A total of 383 participants (mean age, 57 years ± 10 [standard deviation]; 229 men) were evaluated (290 in the training cohort, 93 in the test cohort). The area under the receiver operating characteristic curve (AUC) was 0.99 for the pCR model in the test cohort, which was higher than the AUC for raters 1 and 2 (0.66 and 0.72, respectively; P < .001 for both). AUC for the DL model was 0.70 for TRG and 0.79 for T downstaging. AUC for pCR with the DL model was better than AUC for the best-performing diffusion kurtosis MRI parameters alone (diffusion coefficient in normal diffusion after correcting the non-Gaussian effect [Dapp value] before neoadjuvant therapy, AUC = 0.76). Subjective evaluation by radiologists yielded a higher error rate (1 − accuracy) (25 of 93 [26.9%] and 23 of 93 [24.8%] for raters 1 and 2, respectively) in predicting pCR than did evaluation with the DL model (two of 93 [2.2%]); the radiologists achieved a lower error rate (12 of 93 [12.9%] and 13 of 93 [14.0%] for raters 1 and 2, respectively) when assisted by the DL model. Conclusion A deep learning model based on diffusion kurtosis MRI showed good performance for predicting pathologic complete response and aided the radiologist in assessing response of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Koh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
20秒前
charliechen完成签到 ,获得积分10
22秒前
hugeyoung完成签到,获得积分10
55秒前
1分钟前
辅仁发布了新的文献求助10
1分钟前
1分钟前
back you up完成签到,获得积分10
1分钟前
1分钟前
HR112完成签到 ,获得积分10
2分钟前
2分钟前
JamesPei应助辅仁采纳,获得10
2分钟前
2分钟前
二月红发布了新的文献求助10
2分钟前
樱桃猴子应助白华苍松采纳,获得10
2分钟前
chiazy完成签到 ,获得积分10
2分钟前
吉吉完成签到,获得积分20
3分钟前
azsxdc完成签到 ,获得积分10
3分钟前
所所应助sidneyyang采纳,获得100
3分钟前
3分钟前
3分钟前
睿睿斌斌完成签到,获得积分10
3分钟前
3分钟前
VDC关闭了VDC文献求助
4分钟前
4分钟前
辅仁发布了新的文献求助10
4分钟前
辅仁完成签到,获得积分10
5分钟前
5分钟前
思源应助白华苍松采纳,获得10
5分钟前
科研通AI2S应助肥肥酱采纳,获得10
6分钟前
6分钟前
平常芝麻发布了新的文献求助10
7分钟前
7分钟前
肥肥酱发布了新的文献求助10
7分钟前
正直的孤晴完成签到,获得积分10
7分钟前
ding应助白华苍松采纳,获得10
7分钟前
10分钟前
专注篮球发布了新的文献求助10
10分钟前
VDC发布了新的文献求助10
10分钟前
小蘑菇应助专注篮球采纳,获得10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526552
求助须知:如何正确求助?哪些是违规求助? 3107000
关于积分的说明 9282031
捐赠科研通 2804593
什么是DOI,文献DOI怎么找? 1539525
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709579