等变映射
图形
计算机科学
代表(政治)
人工神经网络
理论计算机科学
对比度(视觉)
人工智能
算法
数学
纯数学
政治
政治学
法学
作者
Victor Garcia Satorras,Emiel Hoogeboom,Max Welling
出处
期刊:Cornell University - arXiv
日期:2021-02-19
被引量:35
摘要
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance. In addition, whereas existing methods are limited to equivariance on 3 dimensional spaces, our model is easily scaled to higher-dimensional spaces. We demonstrate the effectiveness of our method on dynamical systems modelling, representation learning in graph autoencoders and predicting molecular properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI