Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique

北京 空气质量指数 环境科学 行动计划 空气污染 污染物 气象学 化学 地理 中国 生态学 生物 考古 有机化学
作者
Tuan V. Vu,Zongbo Shi,Jing Cheng,Qiang Zhang,Kebin He,Shuxiao Wang,Roy M. Harrison
出处
期刊:Atmospheric Chemistry and Physics 卷期号:19 (17): 11303-11314 被引量:324
标识
DOI:10.5194/acp-19-11303-2019
摘要

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霖宸羽完成签到,获得积分10
1秒前
4秒前
淡然的衣完成签到 ,获得积分10
4秒前
清晨完成签到,获得积分10
4秒前
5秒前
5秒前
Tian完成签到 ,获得积分10
6秒前
cloudy90发布了新的文献求助10
6秒前
bkagyin应助bbdd2334采纳,获得10
7秒前
可爱的函函应助wenxiansci采纳,获得10
8秒前
超级mxl发布了新的文献求助10
9秒前
hms发布了新的文献求助10
11秒前
1021完成签到,获得积分10
14秒前
cij123完成签到,获得积分10
14秒前
听雨驳回了Jasper应助
15秒前
15秒前
Dado完成签到,获得积分10
16秒前
玥来玥好发布了新的文献求助10
19秒前
敖江风云发布了新的文献求助10
19秒前
20秒前
TAD发布了新的文献求助10
21秒前
Kriemhild完成签到,获得积分10
22秒前
Tao完成签到,获得积分10
23秒前
若水发布了新的文献求助10
24秒前
小二郎应助大帅比采纳,获得10
24秒前
26秒前
www发布了新的文献求助10
27秒前
27秒前
可爱的函函应助mmyhn采纳,获得10
28秒前
上官若男应助小平采纳,获得10
28秒前
科研通AI2S应助超级mxl采纳,获得10
29秒前
30秒前
30秒前
30秒前
zuochao发布了新的文献求助10
31秒前
33秒前
领导范儿应助Jane采纳,获得10
34秒前
淡定冰双完成签到,获得积分10
34秒前
orange完成签到 ,获得积分10
35秒前
宇文无施发布了新的文献求助10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147