Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique

北京 空气质量指数 环境科学 行动计划 空气污染 污染物 气象学 化学 地理 中国 生态学 生物 考古 有机化学
作者
Tuan V. Vu,Zongbo Shi,Jing Cheng,Qiang Zhang,Kebin He,Shuxiao Wang,Roy M. Harrison
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:19 (17): 11303-11314 被引量:324
标识
DOI:10.5194/acp-19-11303-2019
摘要

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘静完成签到,获得积分10
刚刚
CR7应助科研通管家采纳,获得50
1秒前
DijiaXu应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
修杰应助科研通管家采纳,获得10
1秒前
DijiaXu应助科研通管家采纳,获得10
1秒前
Mannose完成签到,获得积分10
1秒前
打打应助科研通管家采纳,获得30
1秒前
DijiaXu应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助英子采纳,获得10
2秒前
王子心发布了新的文献求助10
2秒前
Yasing完成签到,获得积分10
3秒前
3秒前
ding应助啦啦啦采纳,获得10
4秒前
十年完成签到 ,获得积分10
6秒前
lalalapa666完成签到,获得积分10
6秒前
sue完成签到,获得积分10
6秒前
笑点低的泥猴桃完成签到,获得积分10
6秒前
swsx1317完成签到,获得积分10
6秒前
7秒前
自然紫山完成签到,获得积分10
7秒前
在水一方应助Wdd采纳,获得10
7秒前
yiyi完成签到,获得积分10
7秒前
火狐狸kc完成签到,获得积分10
8秒前
SwampMan完成签到 ,获得积分10
9秒前
Seiswan完成签到,获得积分10
9秒前
9秒前
研友_nPPdan完成签到,获得积分10
10秒前
陈明宇关注了科研通微信公众号
10秒前
10秒前
yanm完成签到,获得积分10
10秒前
cistronic完成签到,获得积分10
11秒前
无语的沛春完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044