Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index

雅卡索引 掷骰子 分割 计算机科学 公制(单位) 豪斯多夫距离 熵(时间箭头) 人工智能 图像分割 模式识别(心理学) 数学 Sørensen–骰子系数 统计 量子力学 物理 经济 运营管理
作者
Tom Eelbode,Jeroen Bertels,Maxim Berman,Dirk Vandermeulen,Frederik Maes,Raf Bisschops,Matthew B. Blaschko
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (11): 3679-3690 被引量:290
标识
DOI:10.1109/tmi.2020.3002417
摘要

In many medical imaging and classical computer vision tasks, the Dice score and Jaccard index are used to evaluate the segmentation performance. Despite the existence and great empirical success of metric-sensitive losses, i.e. relaxations of these metrics such as soft Dice, soft Jaccard and Lovasz-Softmax, many researchers still use per-pixel losses, such as (weighted) cross-entropy to train CNNs for segmentation. Therefore, the target metric is in many cases not directly optimized. We investigate from a theoretical perspective, the relation within the group of metric-sensitive loss functions and question the existence of an optimal weighting scheme for weighted cross-entropy to optimize the Dice score and Jaccard index at test time. We find that the Dice score and Jaccard index approximate each other relatively and absolutely, but we find no such approximation for a weighted Hamming similarity. For the Tversky loss, the approximation gets monotonically worse when deviating from the trivial weight setting where soft Tversky equals soft Dice. We verify these results empirically in an extensive validation on six medical segmentation tasks and can confirm that metric-sensitive losses are superior to cross-entropy based loss functions in case of evaluation with Dice Score or Jaccard Index. This further holds in a multi-class setting, and across different object sizes and foreground/background ratios. These results encourage a wider adoption of metric-sensitive loss functions for medical segmentation tasks where the performance measure of interest is the Dice score or Jaccard index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非而者厚应助科研通管家采纳,获得10
刚刚
咕噜完成签到,获得积分10
刚刚
传奇3应助wlm采纳,获得30
1秒前
2秒前
2秒前
超帅柚子完成签到 ,获得积分10
2秒前
3秒前
Dani发布了新的文献求助20
3秒前
4秒前
4秒前
5秒前
小香草发布了新的文献求助20
5秒前
Grace完成签到,获得积分20
6秒前
我是老大应助青烟采纳,获得10
7秒前
7秒前
8秒前
8秒前
Jian-ShuWang发布了新的文献求助50
8秒前
长颈鹿发布了新的文献求助10
8秒前
Ting发布了新的文献求助10
8秒前
9秒前
cst完成签到,获得积分10
9秒前
延边棒子发布了新的文献求助10
11秒前
勤奋愫关注了科研通微信公众号
11秒前
11秒前
科研通AI5应助24豆采纳,获得10
12秒前
风清扬发布了新的文献求助10
12秒前
李健的小迷弟应助dhh198采纳,获得10
13秒前
搜集达人应助快乐的秋翠采纳,获得10
14秒前
309发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助50
15秒前
汉堡包应助饱满香彤采纳,获得10
15秒前
17秒前
冰冰完成签到 ,获得积分10
17秒前
英俊的铭应助哈哈哈采纳,获得10
17秒前
yyy发布了新的文献求助10
18秒前
19秒前
勤劳的乐安完成签到,获得积分10
19秒前
科研通AI6应助沙烨男采纳,获得10
20秒前
今后应助tiam采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601611
求助须知:如何正确求助?哪些是违规求助? 4011231
关于积分的说明 12418727
捐赠科研通 3691229
什么是DOI,文献DOI怎么找? 2034937
邀请新用户注册赠送积分活动 1068230
科研通“疑难数据库(出版商)”最低求助积分说明 952765