Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index

雅卡索引 掷骰子 分割 计算机科学 公制(单位) 豪斯多夫距离 熵(时间箭头) 人工智能 图像分割 模式识别(心理学) 数学 Sørensen–骰子系数 统计 运营管理 物理 量子力学 经济
作者
Tom Eelbode,Jeroen Bertels,Maxim Berman,Dirk Vandermeulen,Frederik Maes,Raf Bisschops,Matthew B. Blaschko
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (11): 3679-3690 被引量:290
标识
DOI:10.1109/tmi.2020.3002417
摘要

In many medical imaging and classical computer vision tasks, the Dice score and Jaccard index are used to evaluate the segmentation performance. Despite the existence and great empirical success of metric-sensitive losses, i.e. relaxations of these metrics such as soft Dice, soft Jaccard and Lovasz-Softmax, many researchers still use per-pixel losses, such as (weighted) cross-entropy to train CNNs for segmentation. Therefore, the target metric is in many cases not directly optimized. We investigate from a theoretical perspective, the relation within the group of metric-sensitive loss functions and question the existence of an optimal weighting scheme for weighted cross-entropy to optimize the Dice score and Jaccard index at test time. We find that the Dice score and Jaccard index approximate each other relatively and absolutely, but we find no such approximation for a weighted Hamming similarity. For the Tversky loss, the approximation gets monotonically worse when deviating from the trivial weight setting where soft Tversky equals soft Dice. We verify these results empirically in an extensive validation on six medical segmentation tasks and can confirm that metric-sensitive losses are superior to cross-entropy based loss functions in case of evaluation with Dice Score or Jaccard Index. This further holds in a multi-class setting, and across different object sizes and foreground/background ratios. These results encourage a wider adoption of metric-sensitive loss functions for medical segmentation tasks where the performance measure of interest is the Dice score or Jaccard index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美昊焱完成签到,获得积分10
1秒前
江湖白晓灵应助yyx采纳,获得20
1秒前
优雅冬灵完成签到,获得积分10
1秒前
田様应助羊羊羊采纳,获得10
1秒前
2秒前
Hello应助君君采纳,获得10
2秒前
ycxlb发布了新的文献求助10
3秒前
ffffan发布了新的文献求助10
4秒前
wusj120发布了新的文献求助10
7秒前
无花果应助跋扈采纳,获得10
7秒前
ycxlb完成签到,获得积分10
8秒前
8秒前
11秒前
11秒前
11秒前
cocolu应助优雅冬灵采纳,获得10
13秒前
完美世界应助wusj120采纳,获得10
13秒前
wang完成签到,获得积分20
14秒前
llll完成签到 ,获得积分10
14秒前
14秒前
15秒前
咚咚发布了新的文献求助10
15秒前
15秒前
16秒前
wang发布了新的文献求助10
17秒前
cocolu应助海不扬波采纳,获得10
17秒前
cocolu应助海不扬波采纳,获得10
17秒前
xylv应助tt采纳,获得10
18秒前
18秒前
yyi1应助至秦采纳,获得10
19秒前
Zita完成签到 ,获得积分10
21秒前
Xiaoning发布了新的文献求助100
22秒前
跋扈发布了新的文献求助10
23秒前
30秒前
31秒前
FashionBoy应助独特的半芹采纳,获得10
32秒前
功必扬完成签到 ,获得积分10
34秒前
笃定发布了新的文献求助10
34秒前
35秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613