RNN-DP: A new differential privacy scheme base on Recurrent Neural Network for Dynamic trajectory privacy protection

计算机科学 差别隐私 循环神经网络 隐私保护 弹道 隐私软件 人工神经网络 匿名 信息隐私 计算机安全 数据挖掘 人工智能 天文 物理
作者
Si Chen,Anmin Fu,Jian Shen,Shui Yu,Huaqun Wang,Huaijiang Sun
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:168: 102736-102736 被引量:39
标识
DOI:10.1016/j.jnca.2020.102736
摘要

Mobile devices furnish users with various services while on the move, but also raise public concerns about trajectory privacy. Unfortunately, traditional privacy protection methods, such as anonymity and generalization, are not secure because they cannot resist attackers with background knowledge. The emergence of differential privacy provides an effective solution to this problem. Still, the existing schemes are almost designed based on the collected aggregate historical data (so-called static trajectory privacy protection), which are not suitable for real-time dynamic trajectory privacy protection of mobile users. Furthermore, due to the complexity and redundancy features of the full trajectory data, the efficiency and accuracy of the privacy protection model are significantly limited by the existing schemes. In this paper, we propose a new differential privacy scheme base on the Recurrent Neural Network for Dynamic trajectory privacy Protection (RNN-DP). We firstly introduce a recurrent neural network model to handle the real-time data effectively instead of the full data. Secondly, we novelty leverage the dynamic velocity attribute to form a quaternion to indicate the status of the users. Moreover, we design a prejudgment mechanism to increase the availability of differential privacy technology. Compared with the current state-of-the-art mechanisms, the experimental results demonstrate that RNN-DP displays excellent performance in privacy protection and data availability for dynamic trajectory data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjjwln完成签到,获得积分10
刚刚
刚刚
可靠的南露完成签到,获得积分10
1秒前
无风之旅完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
旋转门发布了新的文献求助10
3秒前
4秒前
蔡佩翰完成签到,获得积分10
4秒前
Gc完成签到,获得积分10
5秒前
传奇3应助MMMX采纳,获得10
5秒前
江筱筱完成签到,获得积分10
5秒前
5秒前
没有名字完成签到 ,获得积分10
6秒前
lemon 1118发布了新的文献求助10
6秒前
hana发布了新的文献求助10
6秒前
6秒前
张大侠完成签到 ,获得积分10
6秒前
cure发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI6应助zy采纳,获得10
6秒前
懒人发布了新的文献求助10
7秒前
洛杉矶的奥斯卡完成签到,获得积分10
7秒前
感动的念双完成签到,获得积分10
7秒前
Sakura应助沉静的过客采纳,获得10
7秒前
7秒前
ty完成签到,获得积分10
8秒前
linus完成签到,获得积分10
8秒前
天天快乐应助细心的青梦采纳,获得10
8秒前
8秒前
reuslee发布了新的文献求助10
8秒前
SciGPT应助心浅采纳,获得10
8秒前
zhangxasq完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472