Efficient photocatalytic hydrogen evolution with high-crystallinity and noble metal-free red phosphorus-CdS nanorods

光催化 纳米棒 结晶度 异质结 材料科学 贵金属 量子效率 载流子 半导体 可见光谱 化学工程 纳米技术 催化作用 分解水 制氢 透射电子显微镜 金属 光化学 化学 光电子学 复合材料 有机化学 冶金 工程类
作者
Mengying Xu,Jiang Linlin,Junting Wang,Shuying Feng,Pier-Luc Tremblay,Tian Zhang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:45 (35): 17354-17366 被引量:20
标识
DOI:10.1016/j.ijhydene.2020.04.200
摘要

The photocatalytic production of H 2 by low-cost semiconductors is a promising approach to store solar energy. Photocatalysts with heterojunctions convert visible light into H 2 faster because of more efficient charge separation. The morphology, the structure, and the crystallinity are additional factors to consider when developing a photocatalyst. Here, highly-crystalline CdS nanorod (NR) were synthesized by a facile one-pot process. Under visible light, pure CdS NR produced H 2 2.1 times faster than conventional CdS nanoparticles (NP). CdS NR were then combined with the semiconductor red phosphorus (RPh). A CdS NR-based heterojunction photocatalyst with RPh 5% had an excellent photocatalytic H 2 evolution rate of 11.72 mmol g −1 h −1 , which was 3.6 times higher than pure CdS NR. The apparent quantum efficiency of RPh 5% /CdS NR was 19.57%. Furthermore, RPh 5% /CdS NR exhibited a superior photogenerated charge separation efficiency and was stable with little photocorrosion compared to CdS NP showing the high potential of this heterojunction photocatalyst. • CdS nanorods with high crystallinity were synthesized by a facile one-pot method. • A heterojunction photocatalyst was fabricated combining CdS NR and red phosphorus. • RPh/CdS NR performed high-efficiency photocatalytic H 2 evolution without noble metal. • RPh/CdS NR had a PHE of 11.72 mmol g −1 h −1 with an AQE of 19.57%. • The photocatalyst was stable and had a high charge separation efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽灵发布了新的文献求助10
刚刚
专注的问寒应助黄老牛采纳,获得150
1秒前
bukeshuo发布了新的文献求助10
2秒前
agrlook完成签到,获得积分10
2秒前
小二郎应助chen采纳,获得10
2秒前
4秒前
专注的问寒应助Seona采纳,获得20
4秒前
大个应助xujingyi采纳,获得10
5秒前
biubiubiu发布了新的文献求助10
5秒前
劉劉完成签到 ,获得积分10
6秒前
xz发布了新的文献求助20
8秒前
univ完成签到,获得积分10
9秒前
笑傲江湖完成签到,获得积分10
9秒前
11秒前
kid完成签到,获得积分10
11秒前
Jasper应助123456采纳,获得30
11秒前
lc发布了新的文献求助10
11秒前
11秒前
小白完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助独特的高山采纳,获得10
12秒前
12秒前
13秒前
13秒前
温暖发布了新的文献求助10
15秒前
kid发布了新的文献求助10
15秒前
Dskelf完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
111给111的求助进行了留言
18秒前
123456完成签到 ,获得积分10
18秒前
香蕉从寒完成签到,获得积分10
21秒前
22秒前
小二郎应助坦率老头采纳,获得10
22秒前
22秒前
利于蓄力完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858