Efficient photocatalytic hydrogen evolution with high-crystallinity and noble metal-free red phosphorus-CdS nanorods

光催化 纳米棒 结晶度 异质结 材料科学 贵金属 量子效率 载流子 半导体 可见光谱 化学工程 纳米技术 催化作用 分解水 制氢 透射电子显微镜 金属 光化学 化学 光电子学 复合材料 有机化学 冶金 工程类
作者
Mengying Xu,Jiang Linlin,Junting Wang,Shuying Feng,Pier-Luc Tremblay,Tian Zhang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:45 (35): 17354-17366 被引量:20
标识
DOI:10.1016/j.ijhydene.2020.04.200
摘要

The photocatalytic production of H 2 by low-cost semiconductors is a promising approach to store solar energy. Photocatalysts with heterojunctions convert visible light into H 2 faster because of more efficient charge separation. The morphology, the structure, and the crystallinity are additional factors to consider when developing a photocatalyst. Here, highly-crystalline CdS nanorod (NR) were synthesized by a facile one-pot process. Under visible light, pure CdS NR produced H 2 2.1 times faster than conventional CdS nanoparticles (NP). CdS NR were then combined with the semiconductor red phosphorus (RPh). A CdS NR-based heterojunction photocatalyst with RPh 5% had an excellent photocatalytic H 2 evolution rate of 11.72 mmol g −1 h −1 , which was 3.6 times higher than pure CdS NR. The apparent quantum efficiency of RPh 5% /CdS NR was 19.57%. Furthermore, RPh 5% /CdS NR exhibited a superior photogenerated charge separation efficiency and was stable with little photocorrosion compared to CdS NP showing the high potential of this heterojunction photocatalyst. • CdS nanorods with high crystallinity were synthesized by a facile one-pot method. • A heterojunction photocatalyst was fabricated combining CdS NR and red phosphorus. • RPh/CdS NR performed high-efficiency photocatalytic H 2 evolution without noble metal. • RPh/CdS NR had a PHE of 11.72 mmol g −1 h −1 with an AQE of 19.57%. • The photocatalyst was stable and had a high charge separation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mlwwq完成签到,获得积分10
1秒前
1秒前
小皮蛋儿完成签到,获得积分10
1秒前
lyn发布了新的文献求助10
1秒前
JUSTs0so完成签到,获得积分10
2秒前
失联者完成签到,获得积分10
2秒前
感性的神级完成签到,获得积分10
2秒前
眯眯眼的谷冬完成签到 ,获得积分10
2秒前
2秒前
花莫凋零发布了新的文献求助10
3秒前
szh123完成签到,获得积分10
3秒前
3秒前
安息香发布了新的文献求助10
3秒前
核桃完成签到,获得积分10
3秒前
丹dan发布了新的文献求助10
3秒前
3秒前
科研通AI5应助大方嵩采纳,获得10
4秒前
4秒前
HYG发布了新的文献求助30
4秒前
4秒前
宝贝发布了新的文献求助10
4秒前
FashionBoy应助tulip采纳,获得10
4秒前
万泉部诗人完成签到,获得积分10
5秒前
文静千愁发布了新的文献求助10
5秒前
YAN发布了新的文献求助10
5秒前
马洛发布了新的文献求助10
5秒前
5秒前
qiqi完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
喻辰星发布了新的文献求助10
7秒前
jasmine970000完成签到,获得积分10
7秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
8秒前
研友_8yPrqZ完成签到,获得积分10
8秒前
自信的伊完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762