神经病理性疼痛
白质
神经科学
磁共振弥散成像
医学
丘脑
部分各向异性
体感系统
纤维束成像
心理学
磁共振成像
放射科
作者
Chi‐Chao Chao,Ming‐Tsung Tseng,Yea-Huey Lin,Paul-Chen Hsieh,Chien‐Ho Lin,Shin-Leh Huang,Sung‐Tsang Hsieh,Ming‐Chang Chiang
出处
期刊:Pain
[Lippincott Williams & Wilkins]
日期:2020-11-23
卷期号:162 (5): 1387-1399
被引量:21
标识
DOI:10.1097/j.pain.0000000000002155
摘要
Abstract Small-fiber neuropathy (SFN) has been traditionally considered as a pure disorder of the peripheral nervous system, characterized by neuropathic pain and degeneration of small-diameter nerve fibers in the skin. Previous functional magnetic resonance imaging studies revealed abnormal activations of pain networks, but the structural basis underlying such maladaptive functional alterations remains elusive. We applied diffusion tensor imaging to explore the influences of SFN on brain microstructures. Forty-one patients with pathology-proven SFN with reduced skin innervation were recruited. White matter connectivity with the thalamus as the seed was assessed using probabilistic tractography of diffusion tensor imaging. Patients with SFN had reduced thalamic connectivity with the insular cortex and the sensorimotor areas, including the postcentral and precentral gyri. Furthermore, the degree of skin nerve degeneration, measured by intraepidermal nerve fiber density, was associated with the reduction of connectivity between the thalamus and pain-related areas according to different neuropathic pain phenotypes, specifically, the frontal, cingulate, motor, and limbic areas for burning, electrical shocks, tingling, mechanical allodynia, and numbness. Despite altered white matter connectivity, there was no change in white matter integrity assessed with fractional anisotropy. Our findings indicate that alterations in structural connectivity may serve as a biomarker of maladaptive brain plasticity that contributes to neuropathic pain after peripheral nerve degeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI