Breast calcification detection based on multichannel radiofrequency signals via a unified deep learning framework

光谱图 计算机科学 人工智能 深度学习 卷积神经网络 模式识别(心理学) 频域 散斑噪声 语音识别 计算机视觉 斑点图案
作者
Menyun Qiao,Zhou Fang,Yi Guo,Shichong Zhou,Cai Chang,Yuanyuan Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:168: 114218-114218 被引量:8
标识
DOI:10.1016/j.eswa.2020.114218
摘要

Breast calcifications in radiographic images suggest a high likelihood of breast lesion malignancy. However, it is difficult to detect calcifications in traditional B-mode ultrasound images due to resolution limits and speckle noise. In this paper, we propose a unified deep learning framework for automatic calcification detection based on multichannel ultrasound radio frequency (RF) signals. First, beamforming is used during preprocessing to merge and blend multichannel signals into one-channel RF signals. Each scan line is converted into a spectrogram by the short-time Fourier transform (STFT) to utilize the frequency domain characteristics. Then, an improved fully convolutional neural network called the RF signal Spectrogram-Calcification-Detection-Net (SCD-Net) is proposed to detect calcifications from spectrograms. This method employs a deep learning architecture based on YOLOv3 and combines features via convolutional long short-term memory (ConvLSTM). Next, a Kalman filter for tracking calcifications between consecutive spectrograms based on SCD-Net detection results is applied since the spatial coherence of calcifications in neighboring frames can be taken into account. Finally, the detected calcification is mapped from the time domain of spectrograms to B-mode images for clinical diagnosis. Experiments were conducted on a database of 337 experienced doctor-marked breast tumors with calcifications. Compared to the state-of-the-art methods for detecting calcifications, the proposed method achieved an average precision (AP) of 88.25%, an accuracy of 84% and an F1 score of 91%. The experimental results demonstrate that the unified framework has great performance for tumor calcification detection. The system can be effectively applied in a portable ultrasound instrument to accurately help radiologists and provide guidance for breast tumor diagnosis. This implies that the proposed approach can be implemented in real practice for analyzing breast RF signals, which have many useful medical applications in clinical breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andy发布了新的文献求助10
1秒前
半夏完成签到,获得积分10
1秒前
koi发布了新的文献求助10
2秒前
Dlan发布了新的文献求助10
2秒前
Ja发布了新的文献求助10
2秒前
搜集达人应助LuoJiajun采纳,获得10
3秒前
Yasmine完成签到 ,获得积分10
3秒前
宁人完成签到,获得积分10
3秒前
little完成签到,获得积分10
3秒前
慕青应助美好的醉波采纳,获得10
3秒前
天天快乐应助mphla采纳,获得10
4秒前
4秒前
暮沐晓光完成签到,获得积分10
5秒前
5秒前
5秒前
Yingling完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
何欢完成签到,获得积分10
9秒前
9秒前
梁双发布了新的文献求助30
9秒前
Sun应助Ludan采纳,获得10
9秒前
10秒前
JHcHuN发布了新的文献求助20
10秒前
10秒前
dxftx应助柔弱丝袜采纳,获得10
11秒前
11发布了新的文献求助10
11秒前
11秒前
Echo完成签到,获得积分10
12秒前
12秒前
科研通AI5应助小小采纳,获得20
12秒前
宁人发布了新的文献求助10
13秒前
哎呀完成签到,获得积分10
13秒前
Yana__Chan完成签到,获得积分10
13秒前
wang发布了新的文献求助30
13秒前
hao123发布了新的文献求助10
13秒前
淡淡的航空完成签到,获得积分10
14秒前
小红帽完成签到,获得积分10
14秒前
星野发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271808
关于积分的说明 9973811
捐赠科研通 2987155
什么是DOI,文献DOI怎么找? 1638750
邀请新用户注册赠送积分活动 778259
科研通“疑难数据库(出版商)”最低求助积分说明 747549