亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A unified machine learning approach to time series forecasting applied to demand at emergency departments

超参数 机器学习 医学 平均绝对百分比误差 平均绝对误差 软件部署 人工智能 急诊科 均方误差 计算机科学 运筹学 统计 人工神经网络 数学 操作系统 精神科
作者
Michaela Vollmer,Ben Glampson,Thomas A. Mellan,Swapnil Mishra,Luca Mercuri,Ceire Costello,Robert Klaber,Graham Cooke,Seth Flaxman,Samir Bhatt
出处
期刊:BMC Emergency Medicine [Springer Nature]
卷期号:21 (1) 被引量:42
标识
DOI:10.1186/s12873-020-00395-y
摘要

Abstract Background There were 25.6 million attendances at Emergency Departments (EDs) in England in 2019 corresponding to an increase of 12 million attendances over the past ten years. The steadily rising demand at EDs creates a constant challenge to provide adequate quality of care while maintaining standards and productivity. Managing hospital demand effectively requires an adequate knowledge of the future rate of admission. We develop a novel predictive framework to understand the temporal dynamics of hospital demand. Methods We compare and combine state-of-the-art forecasting methods to predict hospital demand 1, 3 or 7 days into the future. In particular, our analysis compares machine learning algorithms to more traditional linear models as measured in a mean absolute error (MAE) and we consider two different hyperparameter tuning methods, enabling a faster deployment of our models without compromising performance. We believe our framework can readily be used to forecast a wide range of policy relevant indicators. Results We find that linear models often outperform machine learning methods and that the quality of our predictions for any of the forecasting horizons of 1, 3 or 7 days are comparable as measured in MAE. Our approach is able to predict attendances at these emergency departments one day in advance up to a mean absolute error of ±14 and ±10 patients corresponding to a mean absolute percentage error of 6.8% and 8.6% respectively. Conclusions Simple linear methods like generalized linear models are often better or at least as good as ensemble learning methods like the gradient boosting or random forest algorithm. However, though sophisticated machine learning methods are not necessarily better than linear models, they improve the diversity of model predictions so that stacked predictions can be more robust than any single model including the best performing one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Kylin采纳,获得10
28秒前
完美世界应助上善若水DT2采纳,获得10
1分钟前
依克完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wxxxxxxxxxx发布了新的文献求助10
1分钟前
Kylin关注了科研通微信公众号
1分钟前
joe完成签到 ,获得积分0
1分钟前
wxxxxxxxxxx完成签到,获得积分10
1分钟前
2分钟前
2分钟前
剑指东方是为谁应助......采纳,获得10
2分钟前
Kylin发布了新的文献求助10
2分钟前
2分钟前
Amadeus发布了新的文献求助10
2分钟前
打打应助Amadeus采纳,获得10
2分钟前
上官若男应助Amadeus采纳,获得10
2分钟前
所所应助Amadeus采纳,获得10
2分钟前
科研通AI2S应助Amadeus采纳,获得10
2分钟前
大个应助Amadeus采纳,获得10
2分钟前
2分钟前
2分钟前
上官若男应助Amadeus采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
青山完成签到,获得积分10
3分钟前
碘伏完成签到 ,获得积分10
3分钟前
fogsea完成签到,获得积分0
3分钟前
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
hani发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509039
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896