Decoding personality trait measures from resting EEG: An exploratory report

和蔼可亲 心理学 脑电图 人格 五大性格特征 神经质 特质 认知心理学 外向与内向 大脑活动与冥想 发展心理学 听力学 社会心理学 神经科学 计算机科学 医学 程序设计语言
作者
Hayley Jach,Daniel Feuerriegel,Luke D. Smillie
出处
期刊:Cortex [Elsevier]
卷期号:130: 158-171 被引量:26
标识
DOI:10.1016/j.cortex.2020.05.013
摘要

Can personality be predicted from oscillatory patterns produced by the brain at rest? To date, relatively few studies using electroencephalography (EEG) have yielded consistent relations between personality trait measures and spectral power. Thus, new exploratory research may help develop targeted hypotheses about how neural processes associated with EEG activity may relate to personality differences. We used multivariate pattern analysis to decode personality scores (i.e., Big Five traits) from resting EEG frequency power spectra. Up to 8 minutes of EEG data was recorded per participant prior to completing an unrelated task (N = 168, Mage = 23.51, 57% female) and, in a subset of participants, after task completion (N = 96, Mage = 23.22, 52% female). In each recording, participants alternated between open and closed eyes. Linear support vector regression with 10-fold cross validation was performed using the power from 62 scalp electrodes within 1 Hz frequency bins from 1 to 30 Hz. One Big Five trait, agreeableness, could be decoded from EEG power ranging from 8 to 19 Hz, and this was consistent across all four recording periods. Neuroticism was decodable using data within the 3–6 Hz range, albeit less consistently. Posterior alpha power negatively correlated with agreeableness, whereas parietal beta power positively correlated with agreeableness. We suggest methods to draw from our results and develop targeted future hypotheses, such as linking to individual alpha frequency and incorporating self-reported emotional states. Our open dataset can be harnessed to reproduce results or investigate new research questions concerning the biological basis of personality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云锋发布了新的文献求助10
刚刚
兴奋的问旋应助务实盼海采纳,获得10
刚刚
李秋静发布了新的文献求助10
刚刚
刚刚
无花果应助cookie采纳,获得10
1秒前
1秒前
斯文败类应助阳尧采纳,获得10
1秒前
2秒前
2秒前
abjz完成签到,获得积分10
2秒前
三千弱水为君饮完成签到,获得积分10
3秒前
3秒前
cata完成签到,获得积分10
3秒前
感谢79转发科研通微信,获得积分50
3秒前
3秒前
troubadourelf发布了新的文献求助10
4秒前
frank发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
感谢超帅冬易转发科研通微信,获得积分50
7秒前
7秒前
8秒前
8秒前
lixia完成签到 ,获得积分10
8秒前
8秒前
9秒前
在水一方应助jy采纳,获得10
9秒前
9秒前
Lucas完成签到,获得积分10
10秒前
10秒前
NorthWang发布了新的文献求助10
10秒前
薄哼哼完成签到,获得积分10
10秒前
troubadourelf完成签到,获得积分10
10秒前
科研小白菜完成签到,获得积分20
11秒前
淡定的思松应助12采纳,获得10
11秒前
lan发布了新的文献求助10
11秒前
韩金龙发布了新的文献求助10
12秒前
12秒前
小飞七应助红毛兔采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794