Endothelial cell senescence: A machine learning-based meta-analysis of transcriptomic studies

衰老 转录组 生物 基因 计算生物学 生物信息学 细胞生物学 遗传学 基因表达
作者
Hyun Suk Park,Sung Young Kim
出处
期刊:Ageing Research Reviews [Elsevier]
卷期号:65: 101213-101213 被引量:19
标识
DOI:10.1016/j.arr.2020.101213
摘要

Numerous systemic vascular dysfunction that leads to age-related diseases is highly associated with endothelial cell (EC) senescence; thus, identifying consensus features of EC senescence is crucial in understanding the mechanisms and identifying potential therapeutic targets. Here, by utilizing a total of 8 screened studies from different origins of ECs, we have successfully obtained common features in both gene and pathway level via sophisticated machine learning algorithms. A total of 400 differentially expressed genes (DEGs) were newly discovered with meta-analysis when compared to the usage of individual studies. The generated parsimonious model established 36 genes and 57 pathways features with non-zero coefficient, suggesting remarkable association of phosphoglycerate dehydrogenase and serine biosynthesis pathway with endothelial cellular senescence. For the cross-validation process to measure model performance of 36 deduced features, leave-one-study-out cross-validation (LOSOCV) was employed, resulting in an overall area under the receiver operating characteristic (AUROC) of 0.983 (95 % CI, 0.952, 1.000) showing excellent discriminative performance. Moreover, pathway-level analysis was performed by Pathifier algorithm, obtaining a total of 698 pathway deregulation scores from the 10,416 merged genes. In this process, high dimensional data was eventually narrowed down to 57 core pathways with AUROC value of 0.982 (95 % CI, 0.945, 1.000). The robust model with high performance underscores the merit of utilizing sophisticated meta-analysis in finding consensus features of endothelial cell senescence, which may lead to the development of therapeutic targets and advanced understanding of vascular dysfunction pathogenesis with further elucidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Jieh采纳,获得20
刚刚
Pureasy完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
xiaochao发布了新的文献求助10
4秒前
Jayden完成签到 ,获得积分10
4秒前
上官若男应助布丁采纳,获得10
4秒前
Owen应助迅哥采纳,获得10
4秒前
芷夜寒霜发布了新的文献求助10
5秒前
小马甲应助洛花羽落采纳,获得10
5秒前
执着水杯完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
279发布了新的文献求助10
7秒前
8秒前
9秒前
xiaochao完成签到,获得积分10
10秒前
含蓄幻枫发布了新的文献求助10
10秒前
SciGPT应助Vespa采纳,获得10
11秒前
11秒前
小嘎完成签到 ,获得积分10
11秒前
飞稿完成签到,获得积分20
11秒前
光亮友安发布了新的文献求助10
11秒前
11秒前
dd发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
15秒前
gdgk完成签到 ,获得积分10
15秒前
15秒前
冷艳的海豚完成签到,获得积分10
16秒前
g143发布了新的文献求助10
16秒前
liniubi发布了新的文献求助10
16秒前
16秒前
黑煤球完成签到,获得积分10
16秒前
orixero应助SCI采纳,获得10
16秒前
飞飞完成签到,获得积分10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663