Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer?

电化学 水处理 吸附 环境科学 电解质 环境化学 阳极 化学 纳米技术 生化工程 计算机科学 化学工程 电极 工艺工程 材料科学 环境工程 有机化学 工程类 物理化学
作者
Jelena Radjenović,Nick Duinslaeger,Shirin Saffar Avval,Brian P. Chaplin
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (23): 14815-14829 被引量:147
标识
DOI:10.1021/acs.est.0c06212
摘要

Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
深海鳕鱼完成签到,获得积分10
3秒前
afatinib完成签到,获得积分10
3秒前
尽快毕业完成签到 ,获得积分10
4秒前
wentong发布了新的文献求助10
5秒前
5秒前
陶醉觅夏发布了新的文献求助10
5秒前
6秒前
6秒前
sci来完成签到,获得积分10
6秒前
ss完成签到 ,获得积分10
6秒前
华仔应助含蓄的溪灵采纳,获得10
7秒前
7秒前
8秒前
文章必发发布了新的文献求助10
8秒前
10秒前
科目三应助XJhahaha采纳,获得10
10秒前
宋宋宋2发布了新的文献求助10
10秒前
书起洛阳完成签到,获得积分20
10秒前
dingtwotwo发布了新的文献求助10
10秒前
11秒前
11秒前
纸之治治完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
benben应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
小马甲应助科研通管家采纳,获得30
13秒前
脑洞疼应助聪明凌丝采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627