EyesGAN: Synthesize human face from human eyes

计算机科学 面子(社会学概念) 人工智能 面部识别系统 相似性(几何) 余弦相似度 领域(数学) 模式识别(心理学) 欧几里德距离 感知 鉴定(生物学) 图像(数学) 数学 社会科学 社会学 纯数学 植物 神经科学 生物
作者
Xiaodong Luo,Xin He,Linbo Qing,Chen Xiang,Luping Liu,Yining Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:404: 213-226 被引量:10
标识
DOI:10.1016/j.neucom.2020.04.121
摘要

Face recognition recently has achieved remarkable success in many fields, especially in mobile payment, authentication, criminal investigation, and city management. However, face occlusion is still the key problem in person identification, such as in the field of anti-terrorism, criminal cases and public security. To solve this problem, an improved end-to-end deep generative adversarial network (named EyesGAN) has been proposed to synthesize human face from human eyes in this paper, which can be used as a potential scheme for masked face recognition. BicycleGAN is chosen as the baseline and effective improvements have been achieved. First, the self-attentional mechanism is introduced so that the improved model can more effectively learn about the internal mapping between human eyes and face. Second, the perceptual loss is applied to guide the model cyclic training and help with updating the network parameters so that the synthesized face can be of higher-similarity to the ground truth face. Third, EyesGAN has been designed by getting the utmost out of the performance of the perceptual loss and the self-attentional mechanism in GANs. A dataset of eyes-to-face synthesis has been reconstructed based on the public face datasets for training and testing. Finally, the faces synthesized by EyesGAN have been quantitatively and qualitatively compared with the results of existing methods. Extensive experiments demenstrate that our proposed method has performed better than the state-of-the-art methods in terms of Average Euclidean Distance, Average Cosine Similarity, Synthesis Accuracy Percentage, Fréchet Inception Distance, and Baidu face recognition rate (the accuracy achieved 96.1% on 615 test data of CelebA database). In this paper, the feasibility of synthesizing human face from human eyes has been explored, and the attention map shows that our network can predict other parts of the face from eyes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让成协发布了新的文献求助30
6秒前
A1phaYi发布了新的文献求助10
9秒前
完美世界应助norberta采纳,获得10
10秒前
倪好发布了新的文献求助10
10秒前
123完成签到,获得积分10
11秒前
卡卡完成签到 ,获得积分10
11秒前
hyjcnhyj完成签到,获得积分10
13秒前
13秒前
小猪佩奇完成签到,获得积分10
14秒前
余启家发布了新的文献求助20
16秒前
18秒前
快乐蕉完成签到,获得积分10
19秒前
贰鸟应助谦让成协采纳,获得20
20秒前
biglixiang完成签到,获得积分10
20秒前
21秒前
自由香魔完成签到,获得积分10
22秒前
23秒前
活泼的觅波完成签到,获得积分10
23秒前
奋豆完成签到 ,获得积分10
24秒前
24秒前
TTK发布了新的文献求助50
26秒前
dev-evo完成签到,获得积分10
27秒前
Morri发布了新的文献求助10
27秒前
田様应助orange9采纳,获得10
27秒前
28秒前
超帅柚子发布了新的文献求助10
29秒前
30秒前
自由香魔发布了新的文献求助10
31秒前
大酋长完成签到,获得积分10
32秒前
快乐的一刀完成签到,获得积分10
33秒前
谦让成协完成签到,获得积分10
34秒前
wch完成签到,获得积分10
34秒前
在水一方应助听雨采纳,获得10
34秒前
36秒前
汉堡包应助快乐的一刀采纳,获得10
38秒前
Hello应助神勇初瑶采纳,获得10
38秒前
happyboy2008完成签到,获得积分10
38秒前
jukongka完成签到,获得积分0
42秒前
欢喜发卡完成签到 ,获得积分10
42秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655