Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

跳跃式监视 最小边界框 计算机科学 公制(单位) 回归 算法 趋同(经济学) 交叉口(航空) 铰链损耗 人工智能 数学 统计 支持向量机 工程类 经济增长 图像(数学) 航空航天工程 经济 运营管理
作者
Zhaohui Zheng,Ping Wang,Wei Liu,Jinze Li,Rongguang Ye,Dongwei Ren
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:34 (07): 12993-13000 被引量:2861
标识
DOI:10.1609/aaai.v34i07.6999
摘要

Bounding box regression is the crucial step in object detection. In existing methods, while ℓn-norm loss is widely adopted for bounding box regression, it is not tailored to the evaluation metric, i.e., Intersection over Union (IoU). Recently, IoU loss and generalized IoU (GIoU) loss have been proposed to benefit the IoU metric, but still suffer from the problems of slow convergence and inaccurate regression. In this paper, we propose a Distance-IoU (DIoU) loss by incorporating the normalized distance between the predicted box and the target box, which converges much faster in training than IoU and GIoU losses. Furthermore, this paper summarizes three geometric factors in bounding box regression, i.e., overlap area, central point distance and aspect ratio, based on which a Complete IoU (CIoU) loss is proposed, thereby leading to faster convergence and better performance. By incorporating DIoU and CIoU losses into state-of-the-art object detection algorithms, e.g., YOLO v3, SSD and Faster R-CNN, we achieve notable performance gains in terms of not only IoU metric but also GIoU metric. Moreover, DIoU can be easily adopted into non-maximum suppression (NMS) to act as the criterion, further boosting performance improvement. The source code and trained models are available at https://github.com/Zzh-tju/DIoU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Abao采纳,获得10
刚刚
sfw驳回了苏照杭应助
1秒前
dingdong发布了新的文献求助10
1秒前
别拖延了要毕业啊完成签到,获得积分10
2秒前
2秒前
2秒前
Rrr发布了新的文献求助10
2秒前
dingdong发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
yuan发布了新的文献求助10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
领导范儿应助Chridy采纳,获得10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
8秒前
孔雨珍发布了新的文献求助10
8秒前
淡定的思松应助通~采纳,获得10
9秒前
9秒前
明亮的八宝粥完成签到,获得积分10
9秒前
mayungui发布了新的文献求助10
9秒前
大型海狮完成签到,获得积分10
9秒前
搜集达人应助科研菜鸟采纳,获得10
10秒前
雨天有伞完成签到,获得积分10
10秒前
蕾子发布了新的文献求助10
10秒前
10秒前
zhui发布了新的文献求助10
10秒前
wanci应助jxcandice采纳,获得10
10秒前
factor发布了新的文献求助10
10秒前
11秒前
泊声发布了新的文献求助20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794