New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data

梯度升压 环境科学 随机森林 北京 卫星 深度学习 地球静止轨道 人工神经网络 气象学 均方误差 遥感 天气研究与预报模式 机器学习 计算机科学 中国 地理 统计 数学 考古 工程类 航空航天工程
作者
Xing Yan,Zhou Zang,Nana Luo,Yize Jiang,Zhanqing Li
出处
期刊:Environment International [Elsevier BV]
卷期号:144: 106060-106060 被引量:87
标识
DOI:10.1016/j.envint.2020.106060
摘要

Particulate matter with a mass concentration of particles with a diameter less than 2.5 μm (PM2.5) is a key air quality parameter. A real-time knowledge of PM2.5 is highly valuable for lowering the risk of detrimental impacts on human health. To achieve this goal, we developed a new deep learning model-EntityDenseNet to retrieve ground-level PM2.5 concentrations from Himawari-8, a geostationary satellite providing high temporal resolution data. In contrast to the traditional machine learning model, the new model has the capability to automatically extract PM2.5 spatio-temporal characteristics. Validation across mainland China demonstrates that hourly, daily and monthly PM2.5 retrievals contain the root-mean-square errors of 26.85, 25.3, and 15.34 μg/m3, respectively. In addition to a higher accuracy achievement when compared with various machine learning inversion methods (backpropagation neural network, extreme gradient boosting, light gradient boosting machine, and random forest), EntityDenseNet can "peek inside the black box" to extract the spatio-temporal features of PM2.5. This model can show, for example, that PM2.5 levels in the coastal city of Tianjin were more influenced by air from Hebei than Beijing. Further, EntityDenseNet can still extract the seasonal characteristics that demonstrate that PM2.5 is more closely related within three month groups over mainland China: (1) December, January and February, (2) March, April and May, (3) July, August and September, even without meteorological information. EntityDenseNet has the ability to obtain high temporal resolution satellite-based PM2.5 data over China in real-time. This could act as an important tool to improve our understanding of PM2.5 spatio-temporal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31313完成签到,获得积分10
1秒前
xiaopei发布了新的文献求助10
2秒前
3秒前
Yolo发布了新的文献求助10
4秒前
4秒前
6秒前
HHH发布了新的文献求助10
6秒前
隐形曼青应助陆靖易采纳,获得10
7秒前
7秒前
xiaopei完成签到,获得积分10
8秒前
enchanted发布了新的文献求助10
9秒前
家伟发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
啦啦啦发布了新的文献求助10
9秒前
上官若男应助无情人雄采纳,获得10
10秒前
11秒前
11秒前
11秒前
哈哈hehe完成签到,获得积分10
12秒前
彭于晏应助鉴湖采纳,获得10
12秒前
12秒前
13秒前
十一完成签到,获得积分10
14秒前
Yukaze发布了新的文献求助10
15秒前
sxy发布了新的文献求助10
16秒前
肖雪依发布了新的文献求助10
17秒前
所所应助Ann采纳,获得10
17秒前
CipherSage应助内向怀曼采纳,获得10
18秒前
精明的期待完成签到,获得积分20
19秒前
CipherSage应助瘦瘦的曲奇采纳,获得10
19秒前
20秒前
汉堡包应助yx_cheng采纳,获得10
20秒前
852应助Yukaze采纳,获得10
21秒前
23秒前
24秒前
25秒前
能不能发一篇完成签到,获得积分10
25秒前
Lucas应助minrui采纳,获得20
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093