School Neighborhood Disadvantage as a Predictor of Long-Term Sick Leave Among Teachers: Prospective Cohort Study

病假 置信区间 人口学 住所 泊松回归 医学 弱势群体 比率 前瞻性队列研究 危险系数 老年学 环境卫生 人口 经济 社会学 外科 内科学 经济增长 物理疗法
作者
Mikko Virtanen,Mika Kivimäki,Jaana Pentti,Tuula Oksanen,Kirsi Ahola,Anne Linna,Anne Kouvonen,Paula Salo,Jussi Vahtera
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:171 (7): 785-792 被引量:34
标识
DOI:10.1093/aje/kwp459
摘要

This ongoing prospective study examined characteristics of school neighborhood and neighborhood of residence as predictors of sick leave among school teachers. School neighborhood income data for 226 lower-level comprehensive schools in 10 towns in Finland were derived from Statistics Finland and were linked to register-based data on 3,063 teachers with no long-term sick leave at study entry. Outcome was medically certified (>9 days) sick leave spells during a mean follow-up of 4.3 years from data collection in 2000–2001. A multilevel, cross-classified Poisson regression model, adjusted for age, type of teaching job, length and type of job contract, school size, baseline health status, and income level of the teacher's residential area, showed a rate ratio of 1.30 (95% confidence interval: 1.03, 1.63) for sick leave among female teachers working in schools located in low-income neighborhoods compared with those working in high-income neighborhoods. A low income level of the teacher's residential area was also independently associated with sick leave among female teachers (rate ratio = 1.50, 95% confidence interval: 1.18, 1.91). Exposure to both low-income school neighborhoods and low-income residential neighborhoods was associated with the greatest risk of sick leave (rate ratio = 1.71, 95% confidence interval: 1.27, 2.30). This study indicates that working and living in a socioeconomically disadvantaged neighborhood is associated with increased risk of sick leave among female teachers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljf发布了新的文献求助20
刚刚
wanci应助wjw采纳,获得10
刚刚
好困发布了新的文献求助30
1秒前
1秒前
玺月洛离完成签到,获得积分10
1秒前
1秒前
愉快书琴完成签到,获得积分10
1秒前
思源应助Zlinco采纳,获得10
2秒前
xzz完成签到,获得积分10
2秒前
Xu_W卜完成签到,获得积分10
2秒前
xavier完成签到,获得积分10
3秒前
细心的盼易完成签到 ,获得积分10
4秒前
浮游应助shinble采纳,获得10
5秒前
大椒完成签到 ,获得积分10
5秒前
shenzhou9发布了新的文献求助10
6秒前
xxh完成签到,获得积分10
6秒前
故意的书本完成签到 ,获得积分10
7秒前
locker完成签到 ,获得积分10
8秒前
lxy完成签到,获得积分10
9秒前
Star完成签到,获得积分10
10秒前
老松松完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
zzuwxj完成签到,获得积分10
11秒前
文献求助完成签到,获得积分10
11秒前
洁净的钢笔完成签到,获得积分10
11秒前
kermitds完成签到 ,获得积分10
11秒前
11秒前
木木完成签到,获得积分10
11秒前
勤劳宛菡完成签到 ,获得积分10
12秒前
shenzhou9完成签到,获得积分10
13秒前
双碳小王子完成签到,获得积分10
13秒前
13秒前
13秒前
勤奋的烨霖完成签到,获得积分10
13秒前
常泽洋122完成签到,获得积分10
13秒前
liujiahao完成签到,获得积分10
14秒前
张瑜完成签到 ,获得积分10
14秒前
浮游应助shinble采纳,获得10
15秒前
sun完成签到,获得积分10
15秒前
李健的小迷弟应助老松松采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093568
求助须知:如何正确求助?哪些是违规求助? 4307112
关于积分的说明 13417958
捐赠科研通 4133280
什么是DOI,文献DOI怎么找? 2264502
邀请新用户注册赠送积分活动 1268092
关于科研通互助平台的介绍 1203910