School Neighborhood Disadvantage as a Predictor of Long-Term Sick Leave Among Teachers: Prospective Cohort Study

病假 置信区间 人口学 住所 泊松回归 医学 弱势群体 比率 前瞻性队列研究 危险系数 老年学 环境卫生 人口 经济 社会学 外科 经济增长 内科学 物理疗法
作者
Mikko Virtanen,Mika Kivimäki,Jaana Pentti,Tuula Oksanen,Kirsi Ahola,Anne Linna,Anne Kouvonen,Paula Salo,Jussi Vahtera
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:171 (7): 785-792 被引量:34
标识
DOI:10.1093/aje/kwp459
摘要

This ongoing prospective study examined characteristics of school neighborhood and neighborhood of residence as predictors of sick leave among school teachers. School neighborhood income data for 226 lower-level comprehensive schools in 10 towns in Finland were derived from Statistics Finland and were linked to register-based data on 3,063 teachers with no long-term sick leave at study entry. Outcome was medically certified (>9 days) sick leave spells during a mean follow-up of 4.3 years from data collection in 2000–2001. A multilevel, cross-classified Poisson regression model, adjusted for age, type of teaching job, length and type of job contract, school size, baseline health status, and income level of the teacher's residential area, showed a rate ratio of 1.30 (95% confidence interval: 1.03, 1.63) for sick leave among female teachers working in schools located in low-income neighborhoods compared with those working in high-income neighborhoods. A low income level of the teacher's residential area was also independently associated with sick leave among female teachers (rate ratio = 1.50, 95% confidence interval: 1.18, 1.91). Exposure to both low-income school neighborhoods and low-income residential neighborhoods was associated with the greatest risk of sick leave (rate ratio = 1.71, 95% confidence interval: 1.27, 2.30). This study indicates that working and living in a socioeconomically disadvantaged neighborhood is associated with increased risk of sick leave among female teachers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI2S应助宇文青寒采纳,获得10
1秒前
从容的春天完成签到,获得积分10
2秒前
Dr.Tang发布了新的文献求助10
2秒前
西柚完成签到,获得积分10
3秒前
4秒前
布布完成签到,获得积分10
4秒前
炼金术士完成签到,获得积分10
4秒前
4秒前
hgy发布了新的文献求助10
4秒前
4秒前
宝康biocom完成签到,获得积分10
5秒前
maidoudou完成签到,获得积分10
5秒前
5秒前
蓝天白云发布了新的文献求助10
5秒前
lww123完成签到,获得积分10
5秒前
Orange应助超级月饼采纳,获得10
6秒前
为之完成签到,获得积分10
6秒前
Cope驳回了more应助
6秒前
7秒前
云青完成签到,获得积分10
7秒前
enshun发布了新的文献求助10
8秒前
8秒前
快乐的千秋完成签到,获得积分10
8秒前
安沐完成签到,获得积分10
9秒前
libs完成签到,获得积分10
9秒前
9秒前
ShengxK完成签到,获得积分10
9秒前
cc完成签到,获得积分10
9秒前
10秒前
断绝的发布了新的文献求助50
10秒前
君莫笑发布了新的文献求助10
10秒前
10秒前
清脆又晴完成签到,获得积分10
10秒前
田様应助躲哪个草采纳,获得10
12秒前
苏卿应助123采纳,获得10
12秒前
埋头科研完成签到,获得积分10
12秒前
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012