School Neighborhood Disadvantage as a Predictor of Long-Term Sick Leave Among Teachers: Prospective Cohort Study

病假 置信区间 人口学 住所 泊松回归 医学 弱势群体 比率 前瞻性队列研究 危险系数 老年学 环境卫生 人口 经济 社会学 外科 内科学 经济增长 物理疗法
作者
Mikko Virtanen,Mika Kivimäki,Jaana Pentti,Tuula Oksanen,Kirsi Ahola,Anne Linna,Anne Kouvonen,Paula Salo,Jussi Vahtera
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:171 (7): 785-792 被引量:34
标识
DOI:10.1093/aje/kwp459
摘要

This ongoing prospective study examined characteristics of school neighborhood and neighborhood of residence as predictors of sick leave among school teachers. School neighborhood income data for 226 lower-level comprehensive schools in 10 towns in Finland were derived from Statistics Finland and were linked to register-based data on 3,063 teachers with no long-term sick leave at study entry. Outcome was medically certified (>9 days) sick leave spells during a mean follow-up of 4.3 years from data collection in 2000–2001. A multilevel, cross-classified Poisson regression model, adjusted for age, type of teaching job, length and type of job contract, school size, baseline health status, and income level of the teacher's residential area, showed a rate ratio of 1.30 (95% confidence interval: 1.03, 1.63) for sick leave among female teachers working in schools located in low-income neighborhoods compared with those working in high-income neighborhoods. A low income level of the teacher's residential area was also independently associated with sick leave among female teachers (rate ratio = 1.50, 95% confidence interval: 1.18, 1.91). Exposure to both low-income school neighborhoods and low-income residential neighborhoods was associated with the greatest risk of sick leave (rate ratio = 1.71, 95% confidence interval: 1.27, 2.30). This study indicates that working and living in a socioeconomically disadvantaged neighborhood is associated with increased risk of sick leave among female teachers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
一期一会发布了新的文献求助30
1秒前
英俊皮卡丘完成签到,获得积分10
1秒前
NexusExplorer应助芋头采纳,获得10
2秒前
任某人完成签到,获得积分10
3秒前
小叶同学完成签到,获得积分10
3秒前
勇敢的心发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
Arlene完成签到 ,获得积分10
5秒前
Aryan关注了科研通微信公众号
5秒前
6秒前
6秒前
6秒前
hokin33完成签到,获得积分10
7秒前
小马甲应助菜菜mm采纳,获得10
7秒前
jyk发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
杏杏发布了新的文献求助10
9秒前
笨笨忘幽关注了科研通微信公众号
9秒前
张一一完成签到,获得积分10
10秒前
惜肉龟发布了新的文献求助10
10秒前
10秒前
11秒前
aloopp发布了新的文献求助10
11秒前
11秒前
慕青应助鳗鱼铸海采纳,获得10
12秒前
乐乐应助英俊皮卡丘采纳,获得10
12秒前
思源应助聪慧的雪糕采纳,获得10
13秒前
Ava应助高天雨采纳,获得20
13秒前
yyang发布了新的文献求助10
13秒前
xn发布了新的文献求助10
14秒前
XinChenLee完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300