Epithelial to Mesenchymal Transition in Renal Fibrogenesis

上皮-间质转换 肝细胞生长因子 癌症研究 细胞生物学 SMAD公司 生物 转化生长因子 纤维化 病理 医学 癌症 内分泌学 转移 受体 生物化学 遗传学
作者
Youhua Liu
出处
期刊:Journal of The American Society of Nephrology 卷期号:15 (1): 1-12 被引量:1008
标识
DOI:10.1097/01.asn.0000106015.29070.e7
摘要

Mature tubular epithelial cells in adult kidney can undergo epithelial-to-mesenchymal transition (EMT), a phenotypic conversion that is fundamentally linked to the pathogenesis of renal interstitial fibrosis. Emerging evidence indicates that a large proportion of interstitial fibroblasts are actually originated from tubular epithelial cells via EMT in diseased kidney. Moreover, selective blockade of EMT in a mouse genetic model dramatically reduces fibrotic lesions after obstructive injury, underscoring a definite importance of EMT in renal fibrogenesis. Tubular EMT is proposed as an orchestrated, highly regulated process that consists of four key steps: (1) loss of epithelial cell adhesion; (2) de novo alpha-smooth muscle actin expression and actin reorganization; (3) disruption of tubular basement membrane; and (4) enhanced cell migration and invasion. Of the many factors that regulate EMT in different ways, transforming growth factor-beta1 is the most potent inducer that is capable of initiating and completing the entire EMT course, whereas hepatocyte growth factor and bone morphogenetic protein-7 act as EMT inhibitors both in vitro and in vivo. Multiple intracellular signaling pathways have been implicated in mediating EMT, in which Smad/integrin-linked kinase may play a central role. This article attempts to provide a comprehensive review of recent advances on understanding the pathologic significance, molecular mechanism, and therapeutic intervention of EMT in the setting of chronic renal fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七院应助斯文谷秋采纳,获得30
2秒前
leaves发布了新的文献求助10
2秒前
ding应助ark861023采纳,获得10
2秒前
3秒前
4秒前
陶醉跳跳糖完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助清秀小蘑菇采纳,获得10
6秒前
小蘑菇应助李梦琦采纳,获得10
6秒前
7秒前
CipherSage应助133采纳,获得10
7秒前
地三鲜发布了新的文献求助10
8秒前
8秒前
Pyc发布了新的文献求助10
10秒前
地三鲜完成签到,获得积分10
13秒前
15秒前
15秒前
SciGPT应助鹿芩采纳,获得10
16秒前
情怀应助蝉鸣夏日长采纳,获得10
16秒前
科研通AI2S应助felix采纳,获得10
17秒前
科研通AI2S应助felix采纳,获得10
17秒前
科研通AI2S应助felix采纳,获得10
17秒前
科研通AI2S应助felix采纳,获得10
17秒前
科目三应助pengXM采纳,获得10
18秒前
19秒前
科研通AI2S应助果汁狸采纳,获得10
21秒前
JamesPei应助leaves采纳,获得10
22秒前
23秒前
wanci应助洛神之心1124采纳,获得10
23秒前
29秒前
30秒前
华仔应助nuonuoweng采纳,获得10
32秒前
34秒前
34秒前
宁洁元发布了新的文献求助10
34秒前
35秒前
133发布了新的文献求助10
35秒前
37秒前
研友_8WM2On应助Zhou采纳,获得30
37秒前
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891