石墨氮化碳
氮化碳
催化作用
化学
带隙
石墨烯
光催化
氮化物
光化学
纳米技术
有机化学
化学工程
碳纤维
材料科学
工程类
光电子学
图层(电子)
复合数
复合材料
作者
Yong Wang,Xinchen Wang,Markus Antonietti
标识
DOI:10.1002/anie.201101182
摘要
Abstract Polymeric graphitic carbon nitride materials (for simplicity: g‐C 3 N 4 ) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g‐C 3 N 4 is a medium‐bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the “polymer chemistry” of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g‐C 3 N 4 and its modifications have a high thermal and chemical stability and can catalyze a number of “dream reactions”, such as photochemical splitting of water, mild and selective oxidation reactions, and—as a coactive catalytic support—superactive hydrogenation reactions. As carbon nitride is metal‐free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI