Cooperative Adaptive Cruise Control

协同自适应巡航控制 巡航控制 自动化 计算机科学 控制(管理) 聚类分析 理论(学习稳定性) 流量(计算机网络) 工程类 控制工程 计算机网络 人工智能 机械工程 机器学习
作者
Steven E Shladover,Christopher Nowakowski,Xiao‐Yun Lu,Robert Ferlis
出处
期刊:Transportation Research Record [SAGE]
卷期号:2489 (1): 145-152 被引量:323
标识
DOI:10.3141/2489-17
摘要

Cooperative adaptive cruise control (CACC) includes multiple concepts of communication-enabled vehicle following and speed control. Definitions and classifications are presented to help clarify the distinctions between types of automated vehicle-following control that are often conflated with each other. A distinction is made between vehicle-to-vehicle (V2V) CACC, based on vehicle–vehicle cooperation, and infrastructure-to-vehicle CACC, in which the infrastructure provides information or guidance to the CACC system (such as the target set speed value). In V2V CACC, communication provides enhanced information so that vehicles can follow their predecessors with higher accuracy, faster response, and shorter gaps; the result would be enhanced traffic flow stability and possibly improved safety. A further distinction is made between CACC, which uses constant-time-gap vehicle following (forming CACC strings), and automated platooning, which uses tightly coupled, constant-clearance, vehicle-following strategies. Although adaptive cruise control (ACC) and CACC are examples of Level 1 automation as defined by both SAE and NHTSA, the vehicle-following performance that can be achieved under each scenario is representative of the performance that should be expected at higher levels of automation. Implementation of CACC in practice will also require consideration of more than the lowest level of vehicle-following and speed regulation performance. Because CACC requires interactions between adjacent equipped vehicles, strategies are needed such as ad hoc, local, or global coordination to cluster CACC vehicles. Some of the challenges that must be overcome to implement the clustering strategies are discussed as well as strategies for separating CACC clusters as they approach their destinations, as potential traffic improvements from CACC will be negated if the vehicles cannot disperse effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛要当院士喽完成签到,获得积分10
刚刚
lmh发布了新的文献求助10
1秒前
LOVER完成签到 ,获得积分10
1秒前
1秒前
kindong发布了新的文献求助10
1秒前
Li完成签到,获得积分10
1秒前
善学以致用应助狮子座采纳,获得10
1秒前
2秒前
sxs完成签到 ,获得积分10
2秒前
慕青应助CHENCEN采纳,获得10
4秒前
阿文完成签到,获得积分10
5秒前
牛牛要当院士喽完成签到,获得积分10
5秒前
5秒前
Jack完成签到,获得积分10
6秒前
6秒前
6秒前
zwww完成签到,获得积分20
6秒前
wdn0411发布了新的文献求助10
6秒前
今天吃什么完成签到,获得积分10
6秒前
雷博发布了新的文献求助10
7秒前
Hello应助Tanghx采纳,获得10
7秒前
7秒前
8秒前
南风北至完成签到,获得积分10
8秒前
独特觅翠完成签到 ,获得积分10
8秒前
深情安青应助Serena采纳,获得10
8秒前
kindong完成签到,获得积分10
9秒前
pluto应助tangyuhua采纳,获得10
10秒前
aaa完成签到,获得积分10
11秒前
宇文青寒发布了新的文献求助20
11秒前
星辰大海应助赵十一采纳,获得10
12秒前
12秒前
nunu发布了新的文献求助10
12秒前
1212发布了新的文献求助10
13秒前
高凯璇发布了新的文献求助10
13秒前
13秒前
顾矜应助小俊花采纳,获得10
14秒前
大模型应助洛洛采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522770
求助须知:如何正确求助?哪些是违规求助? 3103775
关于积分的说明 9267140
捐赠科研通 2800323
什么是DOI,文献DOI怎么找? 1536921
邀请新用户注册赠送积分活动 715217
科研通“疑难数据库(出版商)”最低求助积分说明 708692