A comprehensive review on ensemble deep learning: Opportunities and challenges

机器学习 集合预报 集成学习 任务(项目管理) 航程(航空) 深度学习 多任务学习 计算机科学 人工智能 工程类 航空航天工程 系统工程
作者
Ammar Mohammed,Rania Kora
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (2): 757-774 被引量:298
标识
DOI:10.1016/j.jksuci.2023.01.014
摘要

In machine learning, two approaches outperform traditional algorithms: ensemble learning and deep learning. The former refers to methods that integrate multiple base models in the same framework to obtain a stronger model that outperforms them. The success of an ensemble method depends on several factors, including how the baseline models are trained and how they are combined. In the literature, there are common approaches to building an ensemble model successfully applied in several domains. On the other hand, deep learning-based models have improved the predictive accuracy of machine learning across a wide range of domains. Despite the diversity of deep learning architectures and their ability to deal with complex problems and the ability to extract features automatically, the main challenge in deep learning is that it requires a lot of expertise and experience to tune the optimal hyper-parameters, which makes it a tedious and time-consuming task. Numerous recent research efforts have been made to approach ensemble learning to deep learning to overcome this challenge. Most of these efforts focus on simple ensemble methods that have some limitations. Hence, this review paper provides comprehensive reviews of the various strategies for ensemble learning, especially in the case of deep learning. Also, it explains in detail the various features or factors that influence the success of ensemble methods. In addition, it presents and accurately categorized several research efforts that used ensemble learning in a wide range of domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
SCI_Dark工人给SCI_Dark工人的求助进行了留言
刚刚
邓娅琴发布了新的文献求助10
1秒前
zjj完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
susan完成签到 ,获得积分10
3秒前
薰硝壤应助SCI著名作者SCT采纳,获得30
3秒前
丰富梦容完成签到 ,获得积分10
3秒前
HONG发布了新的文献求助10
5秒前
风中的宛白应助薰硝壤采纳,获得10
5秒前
孙伟健发布了新的文献求助10
6秒前
孙伟健发布了新的文献求助10
6秒前
孙伟健发布了新的文献求助10
6秒前
孙伟健发布了新的文献求助10
6秒前
6秒前
Hello应助帅气凌香采纳,获得10
9秒前
深情安青应助研友_V8Qmr8采纳,获得10
10秒前
深情的鞯完成签到,获得积分10
10秒前
Jonas发布了新的文献求助10
10秒前
11秒前
12秒前
Powerfulg完成签到,获得积分10
13秒前
orixero应助孤独的寒天采纳,获得10
13秒前
14秒前
耍酷蛋挞发布了新的文献求助10
14秒前
15秒前
科目三应助dyf采纳,获得10
15秒前
15秒前
小魏哥哥完成签到,获得积分10
17秒前
ziyou发布了新的文献求助20
17秒前
18秒前
joplinJIA关注了科研通微信公众号
18秒前
18秒前
撒旦发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866