VDAC1型
线粒体通透性转换孔
细胞生物学
生物
线粒体
程序性细胞死亡
线粒体凋亡诱导通道
DNAJA3公司
线粒体膜转运蛋白
细胞凋亡
细胞色素c
线粒体内膜
生物化学
线粒体融合
细菌外膜
线粒体DNA
基因
大肠杆菌
作者
Shubhangini Tiwari,Abhishek Singh,Parul Gupta,K Amrutha,Sarika Singh
标识
DOI:10.1021/acschemneuro.2c00579
摘要
Mitochondrial homeostasis regulates energy metabolism, calcium buffering, cell function, and apoptosis. The present study has been conducted to investigate the implications of the ubiquitin-encoding gene UBA52 in mitochondrial physiology. Transient expression of Myc-UBA52 in neurons significantly inhibited the rotenone-induced increase in reactive oxygen species generation, nitrite level, and depleted glutathione level. Mass spectrometric and coimmunoprecipitation data suggested the profound interaction of UBA52 with mitochondrial outer membrane channel protein, VDAC1 in both the wild-type and Myc-α-synuclein overexpressed neuronal cells and in the Parkinson's disease (PD)-specific substantia nigra and striatal region of the rat brain. In vitro ubiquitylation assay revealed that UBA52 participates in the ubiquitylation of VDAC1 through E3 ligase CHIP. Myc-UBA52 overexpression in neurons further improved the mitochondrial functionality and cell viability by preventing the alteration in mitochondrial membrane potential, mitochondrial complex I activity, and translocation of cytochrome c and p-Nrf2 along with the effect on intracellular calcium uptake, thus collectively inhibiting the opening of mitochondrial permeability transition pore. Additionally, Myc-UBA52 expression in neuronal cells offered protection against apoptotic and autophagic cell death. Altogether, our findings delineate a functional association between UBA52 and mitochondrial homeostasis, providing new insights into the deterrence of dopaminergic cell death during acute PD pathogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI