Rapid Data Acquisition and Machine Learning-Assisted Composition Design of Functionally Graded Alloys Via Wire-Feed Additive Manufacturing

合金 材料科学 计算机科学 过程(计算) 极限抗拉强度 联轴节(管道) 机器学习 多孔性 人工智能 机械工程 工艺工程 冶金 复合材料 工程类 操作系统
作者
Xin Wang,Soumya Sridar,Michael A. Klecka,Wei Xiong
标识
DOI:10.2139/ssrn.4709921
摘要

The application of artificial intelligence in materials discovery and design is hindered by the lack of high-quality datasets, which necessitates the development of rapid techniques for acquiring reliable data. Wire-feed additive manufacturing (WFAM) offers a promising approach for fabricating functionally graded alloys with precise composition control, thereby enabling generating extensive datasets to investigate process-structure-property (PSP) relationships and facilitating machine learning-assisted alloy design. Leveraging high-throughput experiments, calculations, and genetic algorithms applied to WFAM-built graded alloys, a machine learning (ML) model was developed based on a database with 32 material descriptors and hundreds of data entries, capable of predicting hardness and porosity. The ML model has demonstrated its efficacy by successfully designing a gradient alloy with enhanced properties, and thus can be used in the functionally graded alloy printing from P91steel to 740H superalloy. This work represents a significant advancement in the application of coupling machine learning and additive manufacturing for materials design. In addition, it offers a rapid and efficient approach for exploring process-structure-property relationships and accelerating alloy development. However, a notable level of uncertainty has been observed in the tensile properties of the designed composition that blends 90 wt.% P91 steel and 10 wt.% 740H alloy. This phenomenon can potentially be ascribed to the larger size of the designed alloy build compared to the gradient print utilized for constructing the machine learning model. This necessitates the inclusion of uncertainty quantification and processing optimization techniques into this design approach. This research brings attention to the importance of considering the part size and thermal history on process-structure-property predictions, particularly in the scale-up design for WFAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duoduo完成签到,获得积分10
刚刚
young完成签到,获得积分10
刚刚
will发布了新的文献求助10
1秒前
ssnha完成签到 ,获得积分10
1秒前
1秒前
2秒前
所所应助123采纳,获得10
2秒前
义气白开水完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助Huang采纳,获得10
2秒前
Gdhdjxbbx发布了新的文献求助10
2秒前
3秒前
4秒前
ket完成签到,获得积分10
4秒前
ao发布了新的文献求助10
4秒前
独特南霜发布了新的文献求助10
5秒前
不厌发布了新的文献求助10
5秒前
6秒前
芸沐发布了新的文献求助10
6秒前
小马甲应助称心的妖妖采纳,获得10
6秒前
李健的粉丝团团长应助bey采纳,获得10
7秒前
善学以致用应助mogic采纳,获得30
7秒前
不安若颜发布了新的文献求助10
9秒前
心灵美的大山完成签到,获得积分10
9秒前
请你加倍努力完成签到,获得积分10
10秒前
天天快乐应助Yvonne采纳,获得10
10秒前
11秒前
吕小软完成签到,获得积分10
11秒前
土豪的荟完成签到,获得积分10
11秒前
炸虾仁发布了新的文献求助10
12秒前
华仔应助caixiayin采纳,获得10
13秒前
大模型应助taki采纳,获得10
13秒前
星辰大海应助rengar采纳,获得10
13秒前
ZZZZZ完成签到,获得积分10
13秒前
青寻完成签到,获得积分10
14秒前
不安豁完成签到,获得积分10
14秒前
搞笑5次完成签到,获得积分10
15秒前
罗小琴发布了新的文献求助10
16秒前
不安若颜完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650