清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rapid Data Acquisition and Machine Learning-Assisted Composition Design of Functionally Graded Alloys Via Wire-Feed Additive Manufacturing

合金 材料科学 计算机科学 过程(计算) 极限抗拉强度 联轴节(管道) 机器学习 多孔性 人工智能 机械工程 工艺工程 冶金 复合材料 工程类 操作系统
作者
Xin Wang,Soumya Sridar,Michael A. Klecka,Wei Xiong
标识
DOI:10.2139/ssrn.4709921
摘要

The application of artificial intelligence in materials discovery and design is hindered by the lack of high-quality datasets, which necessitates the development of rapid techniques for acquiring reliable data. Wire-feed additive manufacturing (WFAM) offers a promising approach for fabricating functionally graded alloys with precise composition control, thereby enabling generating extensive datasets to investigate process-structure-property (PSP) relationships and facilitating machine learning-assisted alloy design. Leveraging high-throughput experiments, calculations, and genetic algorithms applied to WFAM-built graded alloys, a machine learning (ML) model was developed based on a database with 32 material descriptors and hundreds of data entries, capable of predicting hardness and porosity. The ML model has demonstrated its efficacy by successfully designing a gradient alloy with enhanced properties, and thus can be used in the functionally graded alloy printing from P91steel to 740H superalloy. This work represents a significant advancement in the application of coupling machine learning and additive manufacturing for materials design. In addition, it offers a rapid and efficient approach for exploring process-structure-property relationships and accelerating alloy development. However, a notable level of uncertainty has been observed in the tensile properties of the designed composition that blends 90 wt.% P91 steel and 10 wt.% 740H alloy. This phenomenon can potentially be ascribed to the larger size of the designed alloy build compared to the gradient print utilized for constructing the machine learning model. This necessitates the inclusion of uncertainty quantification and processing optimization techniques into this design approach. This research brings attention to the importance of considering the part size and thermal history on process-structure-property predictions, particularly in the scale-up design for WFAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芍药完成签到 ,获得积分10
4秒前
HHM完成签到,获得积分10
8秒前
10秒前
13秒前
SONGREN发布了新的文献求助10
17秒前
cao_bq完成签到,获得积分10
17秒前
ceeray23发布了新的文献求助20
19秒前
收集快乐完成签到 ,获得积分10
29秒前
凌泉完成签到 ,获得积分10
43秒前
ceeray23应助科研通管家采纳,获得10
45秒前
ceeray23应助科研通管家采纳,获得10
45秒前
znchick完成签到,获得积分10
52秒前
氟锑酸完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
67完成签到 ,获得积分10
1分钟前
酷酷的涵蕾完成签到 ,获得积分10
1分钟前
情怀应助xun采纳,获得10
1分钟前
淡然的念珍完成签到 ,获得积分10
1分钟前
30完成签到 ,获得积分10
1分钟前
LM完成签到,获得积分10
2分钟前
2分钟前
制药人完成签到 ,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
专注的觅云完成签到 ,获得积分10
2分钟前
qin202569完成签到,获得积分10
2分钟前
锋回露转123完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得20
2分钟前
xun完成签到,获得积分20
2分钟前
ninini完成签到 ,获得积分10
3分钟前
Augustines完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Kkk118发布了新的文献求助10
3分钟前
Honor完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599901
求助须知:如何正确求助?哪些是违规求助? 4685655
关于积分的说明 14838739
捐赠科研通 4673146
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470985