亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid Data Acquisition and Machine Learning-Assisted Composition Design of Functionally Graded Alloys Via Wire-Feed Additive Manufacturing

合金 材料科学 计算机科学 过程(计算) 极限抗拉强度 联轴节(管道) 机器学习 多孔性 人工智能 机械工程 工艺工程 冶金 复合材料 工程类 操作系统
作者
Xin Wang,Soumya Sridar,Michael A. Klecka,Wei Xiong
标识
DOI:10.2139/ssrn.4709921
摘要

The application of artificial intelligence in materials discovery and design is hindered by the lack of high-quality datasets, which necessitates the development of rapid techniques for acquiring reliable data. Wire-feed additive manufacturing (WFAM) offers a promising approach for fabricating functionally graded alloys with precise composition control, thereby enabling generating extensive datasets to investigate process-structure-property (PSP) relationships and facilitating machine learning-assisted alloy design. Leveraging high-throughput experiments, calculations, and genetic algorithms applied to WFAM-built graded alloys, a machine learning (ML) model was developed based on a database with 32 material descriptors and hundreds of data entries, capable of predicting hardness and porosity. The ML model has demonstrated its efficacy by successfully designing a gradient alloy with enhanced properties, and thus can be used in the functionally graded alloy printing from P91steel to 740H superalloy. This work represents a significant advancement in the application of coupling machine learning and additive manufacturing for materials design. In addition, it offers a rapid and efficient approach for exploring process-structure-property relationships and accelerating alloy development. However, a notable level of uncertainty has been observed in the tensile properties of the designed composition that blends 90 wt.% P91 steel and 10 wt.% 740H alloy. This phenomenon can potentially be ascribed to the larger size of the designed alloy build compared to the gradient print utilized for constructing the machine learning model. This necessitates the inclusion of uncertainty quantification and processing optimization techniques into this design approach. This research brings attention to the importance of considering the part size and thermal history on process-structure-property predictions, particularly in the scale-up design for WFAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
57秒前
脑洞疼应助张卉佳采纳,获得10
1分钟前
1分钟前
1分钟前
dormraider完成签到,获得积分10
2分钟前
2分钟前
3分钟前
zcx发布了新的文献求助10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
Minghao关注了科研通微信公众号
3分钟前
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
传奇完成签到 ,获得积分10
4分钟前
zcn123发布了新的文献求助10
4分钟前
研友_VZG7GZ应助zcn123采纳,获得10
4分钟前
5分钟前
张卉佳发布了新的文献求助10
5分钟前
Anders关注了科研通微信公众号
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shinysparrow应助weirdo采纳,获得200
6分钟前
雪山飞龙完成签到,获得积分10
6分钟前
7分钟前
桐桐应助渊思采纳,获得10
7分钟前
weirdo发布了新的文献求助100
7分钟前
7分钟前
浮云完成签到 ,获得积分10
7分钟前
渊思发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
心随以动完成签到 ,获得积分10
8分钟前
修辛完成签到 ,获得积分10
8分钟前
wangermazi完成签到,获得积分10
9分钟前
思源应助科研通管家采纳,获得10
9分钟前
9527完成签到,获得积分10
10分钟前
王维完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
daiyu发布了新的文献求助30
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045945
关于积分的说明 9003727
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691477