已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving NLOS/LOS Classification Accuracy in Urban Canyon Based on Channel-Independent Patch Transformer with Temporal Information

非视线传播 峡谷 计算机科学 变压器 人工智能 遥感 数据挖掘 地质学 地图学 地理 电信 无线 工程类 电压 电气工程
作者
Jiajun Chen,Jingran Wang,Shaolong Zheng,Yujie Liu,Zhenni Li,Shengli Xie,Qianming Wang
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting
标识
DOI:10.33012/2024.19507
摘要

The global navigation satellite systems (GNSS) positioning performance is significantly degraded due to the blocking of direct signals and errors caused by reflected signals in urban canyons. Recent studies have used deep learning or machine learning methods to distinguish the line-of-sight(LOS) and non-line-of-sight(NLOS) signals to solve multi-path problems. However, these approaches still face challenges. The visibility of satellites is relatively stable in a short period, but the features of their signals change in varying degrees. Existing methods focus on the visibility identification of satellites at a single epoch, which fails to capture the effect of the temporal features of satellite signals on visibility and ignores the complex associations between satellites at multiple continual epochs. To address the above challenge, this paper develops a novel channel-independent patch transformer neural network with temporal information, for improving the prediction of GNSS satellite visibility. Firstly, to capture the influence of individual satellite features on the classifications of NLOS signals, we adopt the concept of independent channels to disentangle the various satellite features. In this way, we construct temporal variations for each feature and then independently assess the effect of these feature variations on satellite visibility. Secondly, to account for the association of multiple continuous epochs satellites, we partition the constructed temporal window feature sequences into a collection of subsequences level patches. This patch-level structural design preserves the semantic associations of multiple epochs satellites while also maintaining the ability to focus across a sufficient number of epochs. Finally, based on the idea of channel independence and patch, we develop a novel channel-independent patch transformer (CIPT) neural network with temporal information for predicting satellite visibility, which can not only learn the effect of individual features on satellite visibility but also focus on the association of multiple epochs satellites. Experimental results on real-world urban canyon datasets demonstrate that our method can achieve more than 90% satellite visibility prediction accuracy, which is about 2.5%-15% higher than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助123采纳,获得10
1秒前
南卡完成签到,获得积分10
1秒前
4秒前
6秒前
6秒前
薛婧旌完成签到,获得积分10
7秒前
虚幻靖易发布了新的文献求助10
8秒前
爱看文献的大力水手完成签到,获得积分20
9秒前
阿源完成签到,获得积分10
9秒前
果粒橙完成签到 ,获得积分10
9秒前
10秒前
swordlee发布了新的文献求助30
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得30
11秒前
11秒前
大白完成签到,获得积分10
11秒前
空白山应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
浦肯野应助苏鱼采纳,获得60
11秒前
Owen应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助QuJiahao采纳,获得30
13秒前
和谐悟空完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
科研通AI5应助HonamC采纳,获得10
15秒前
叶子发布了新的文献求助10
15秒前
传奇3应助聪慧的芷波采纳,获得10
16秒前
17秒前
哈哈哈完成签到,获得积分10
17秒前
小蝶发布了新的文献求助10
17秒前
18秒前
luoluo发布了新的文献求助10
18秒前
20秒前
lyt完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544212
求助须知:如何正确求助?哪些是违规求助? 3121381
关于积分的说明 9346796
捐赠科研通 2819557
什么是DOI,文献DOI怎么找? 1550292
邀请新用户注册赠送积分活动 722414
科研通“疑难数据库(出版商)”最低求助积分说明 713258