托卡马克
感知器
安全系数
计算机科学
卷积神经网络
人工神经网络
理论(学习稳定性)
等离子体
人工智能
算法
物理
多层感知器
应用数学
机器学习
数学
核物理学
作者
Hanyu 瀚予 ZHANG 张,Lina 利娜 ZHOU 周,Yueqiang 钺强 LIU 刘,Guangzhou 广周 HAO 郝,Shuo 硕 WANG 王,Xu Yong,Yutian 雨田 MIAO 苗,Ping 萍 DUAN 段,Long 龙 CHEN 陈
出处
期刊:Plasma Science & Technology
[IOP Publishing]
日期:2023-12-08
卷期号:26 (5): 055101-055101
标识
DOI:10.1088/2058-6272/ad13e3
摘要
Abstract Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q -profile while varying other plasma parameters. A neural network (NN)-based approach is investigated that facilitates such a process. Both multilayer perceptron (MLP)-based NN and convolutional neural network (CNN) models are trained to map the q- profile to the plasma current density J -profile, and vice versa, while satisfying the Grad–Shafranov radial force balance constraint. When the initial target models are trained, using a database of semi-analytically constructed numerical equilibria, an initial CNN with one convolutional layer is found to perform better than an initial MLP model. In particular, a trained initial CNN model can also predict the q - or J -profile for experimental tokamak equilibria. The performance of both initial target models is further improved by fine-tuning the training database, i.e. by adding realistic experimental equilibria with Gaussian noise. The fine-tuned target models, referred to as fine-tuned MLP and fine-tuned CNN, well reproduce the target q - or J -profile across multiple tokamak devices. As an important application, these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers, where the desired input quantity is the safety factor instead of the plasma current density.
科研通智能强力驱动
Strongly Powered by AbleSci AI