MC-Net: Integrating Multi-level Geometric Context for Two-view Correspondence Learning

计算机科学 背景(考古学) 人工智能 网(多面体) 上下文模型 计算机视觉 理论计算机科学 数学 几何学 生物 古生物学 对象(语法)
作者
Zizhuo Li,Chunbao Su,Fan Fan,Jun Huang,Jiayi Ma
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7550-7565 被引量:3
标识
DOI:10.1109/tcsvt.2024.3374772
摘要

In two-view correspondence learning, prevalent multi-layer perceptron (MLP)-based methods struggle with context capturing. To remedy this issue, recent advances innovatively stack convolutional neural network (CNN)-based Resblocks sequentially, showing an inherent proficiency in local context extraction. Yet, such non-issue-specific designs inherit the drawback of CNN's difficulty in aggregating global context, leading to performance bottlenecks. To address this problem, this prospective study further explores the potential of the CNN-based framework and proposes MC-Net, a top-performing network that integrates both local and global context elegantly and seamlessly. Specifically, considering that sparse motion vectors and a dense motion field can be converted into each other through interpolation and sampling, we first transform unordered matches into image-structured data by estimating the dense motion field implicitly. Then, we design a hierarchical rectifying module to rectify the error of each ordered motion vector with CNN at multiple levels, enabling MC-Net to perceive global context from coarse-level features and local context from fine-level features simultaneously, which facilitates to tackle the discontinuities of the motion field in case of large scene disparity. Finally, we reconstruct comprehensive context-embedded features from rectified motion fields at all levels. Also, instead of using the residuals between rectified and pre-rectified motion vectors at the same layer to reject outliers as in previous studies, which seriously affects the inlier prediction accuracy, we rethink this operation meticulously and modify it to the difference between motion vectors obtained from each layer's reconstruction and ones from the first layer before transformation, ensuring purer residuals and enhancing the matching performance without extra computational burden. Extensive experiments show that MC-Net outperforms state-of-the-arts on multiple domains and datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助认真的烧鹅采纳,获得10
刚刚
mumu完成签到,获得积分10
刚刚
无花果应助178181采纳,获得10
刚刚
流氓兔完成签到,获得积分10
1秒前
WGZh发布了新的文献求助10
2秒前
昊昊发布了新的文献求助10
2秒前
烟花应助mumu采纳,获得10
3秒前
杪123发布了新的文献求助10
5秒前
KK完成签到,获得积分10
5秒前
shanekhost完成签到 ,获得积分10
5秒前
ytolll完成签到,获得积分20
6秒前
hh发布了新的文献求助30
6秒前
6秒前
小大大小小应助fhbsdufh采纳,获得10
7秒前
jwx应助昊昊采纳,获得10
7秒前
8秒前
9秒前
orixero应助含蓄清炎采纳,获得10
9秒前
9秒前
灰灰发布了新的文献求助10
11秒前
11秒前
zhou发布了新的文献求助10
13秒前
科目三应助jj采纳,获得10
13秒前
178181发布了新的文献求助10
13秒前
14秒前
14秒前
17秒前
yulia发布了新的文献求助10
17秒前
大将军完成签到,获得积分10
18秒前
读书妖精文亭逐完成签到,获得积分10
18秒前
zhuzixuan发布了新的文献求助10
19秒前
gcc应助mojito采纳,获得10
20秒前
万能图书馆应助ronnie采纳,获得10
23秒前
25秒前
Kloria应助zhou采纳,获得10
25秒前
26秒前
PGS完成签到,获得积分10
27秒前
Www完成签到,获得积分10
27秒前
激动的猫咪完成签到,获得积分10
27秒前
勿明应助hh采纳,获得30
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978