Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier BV]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑小熊猫完成签到,获得积分10
2秒前
假装有昵称完成签到,获得积分10
2秒前
陆未离完成签到,获得积分10
2秒前
Xu完成签到 ,获得积分10
4秒前
温暖发布了新的文献求助10
4秒前
山260完成签到 ,获得积分10
5秒前
李健应助青天白日采纳,获得10
5秒前
5秒前
韦巧完成签到,获得积分10
6秒前
十一完成签到,获得积分10
6秒前
wooooo发布了新的文献求助10
7秒前
小怪完成签到,获得积分20
7秒前
8秒前
无花果应助高_采纳,获得10
9秒前
我是好人发布了新的文献求助10
9秒前
YZQ完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
巫马夜安完成签到,获得积分10
13秒前
寸光发布了新的文献求助10
14秒前
无聊的人完成签到 ,获得积分10
16秒前
17秒前
高_完成签到,获得积分10
17秒前
我是好人完成签到,获得积分10
19秒前
19秒前
陶醉太阳完成签到,获得积分10
20秒前
热心市民小红花应助朱洪采纳,获得10
20秒前
呆鸥完成签到,获得积分10
20秒前
21秒前
bkagyin应助123采纳,获得10
21秒前
魅猫使者发布了新的文献求助10
24秒前
昭谏完成签到,获得积分10
24秒前
27秒前
卡酷发布了新的文献求助10
27秒前
小鱼完成签到,获得积分10
29秒前
桐桐应助羊可采纳,获得10
30秒前
含糊的紫菜完成签到 ,获得积分10
32秒前
32秒前
wooooo完成签到,获得积分10
32秒前
小阳发布了新的文献求助10
34秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150