Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘坦苇发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
华仔应助坚强幼荷采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
CodeCraft应助仲某某采纳,获得10
3秒前
3秒前
充电宝应助Liqy采纳,获得10
4秒前
4秒前
5秒前
在水一方应助wbh采纳,获得10
5秒前
5秒前
6秒前
6秒前
刘坦苇发布了新的文献求助10
7秒前
chloe发布了新的文献求助30
7秒前
8秒前
seedcui完成签到,获得积分10
8秒前
yanganqi发布了新的文献求助10
8秒前
8秒前
9秒前
123发布了新的文献求助10
10秒前
10秒前
123456789hyb发布了新的文献求助10
10秒前
11秒前
情怀应助Broadway Zhang采纳,获得10
11秒前
脑洞疼应助WL采纳,获得10
11秒前
11秒前
不安青牛应助飞云采纳,获得10
11秒前
苏紫梗桔完成签到 ,获得积分10
12秒前
01发布了新的文献求助10
12秒前
12秒前
轻松小张完成签到,获得积分10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
12秒前
今后应助刻苦的雁荷采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459450
求助须知:如何正确求助?哪些是违规求助? 3053885
关于积分的说明 9039213
捐赠科研通 2743260
什么是DOI,文献DOI怎么找? 1504731
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694677