Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的水之完成签到,获得积分10
刚刚
wangshibing发布了新的文献求助10
刚刚
刚刚
ly完成签到,获得积分10
刚刚
爆米花应助bhc186采纳,获得10
刚刚
颜颜完成签到,获得积分10
1秒前
一个发布了新的文献求助10
1秒前
难过小天鹅完成签到,获得积分10
2秒前
2秒前
顾矜应助zhenxing采纳,获得10
3秒前
3秒前
Galneryus发布了新的文献求助30
3秒前
华仔应助零一秒采纳,获得10
4秒前
齐小明发布了新的文献求助10
5秒前
5秒前
5秒前
zhuqian发布了新的文献求助10
5秒前
bkagyin应助CQ采纳,获得10
6秒前
6秒前
Orange应助烂漫的雁开采纳,获得10
6秒前
梨涡远点完成签到,获得积分10
6秒前
jiangzhiyun完成签到,获得积分10
6秒前
6秒前
7秒前
wangshibing完成签到,获得积分10
7秒前
万能的翔王完成签到,获得积分10
7秒前
万能图书馆应助国家栋梁采纳,获得10
7秒前
淡定新之完成签到,获得积分10
7秒前
8秒前
8秒前
Aubrey发布了新的文献求助10
8秒前
科研通AI6应助一个采纳,获得10
8秒前
8秒前
Hello应助zhuqian采纳,获得10
9秒前
杨张浩发布了新的文献求助10
10秒前
DF完成签到 ,获得积分10
10秒前
unravel完成签到,获得积分10
10秒前
跳跃桃子发布了新的文献求助50
10秒前
Rubby应助微微采纳,获得20
11秒前
祖飞扬完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609098
求助须知:如何正确求助?哪些是违规求助? 4693856
关于积分的说明 14879718
捐赠科研通 4719158
什么是DOI,文献DOI怎么找? 2544656
邀请新用户注册赠送积分活动 1509595
关于科研通互助平台的介绍 1472917