Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助北月采纳,获得10
刚刚
刚刚
1秒前
遇见完成签到,获得积分10
1秒前
FyD发布了新的文献求助10
1秒前
1秒前
洛兮完成签到,获得积分10
1秒前
Lucas应助飞在夏夜的猫采纳,获得10
1秒前
慕青应助小宋采纳,获得10
1秒前
zgrmws应助we采纳,获得20
1秒前
2秒前
书岩完成签到,获得积分10
2秒前
2秒前
tpkkcdd完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
lan完成签到 ,获得积分10
4秒前
雪梨发布了新的文献求助20
5秒前
彭于晏应助Yuan采纳,获得30
5秒前
希望天下0贩的0应助lk采纳,获得10
5秒前
una完成签到 ,获得积分10
5秒前
聪明的bala给聪明的bala的求助进行了留言
5秒前
zsyhcl应助夏小胖采纳,获得10
5秒前
6秒前
默幻弦发布了新的文献求助10
6秒前
俊俊发布了新的文献求助20
6秒前
默默问芙发布了新的文献求助30
7秒前
wanci应助种花家的狗狗采纳,获得10
7秒前
李喵喵发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
doctorw发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406