Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
likeit完成签到,获得积分20
1秒前
ZSS_ism完成签到,获得积分10
1秒前
1秒前
爱听歌的果汁给爱听歌的果汁的求助进行了留言
1秒前
1秒前
花佚狐完成签到,获得积分10
3秒前
3秒前
kk关闭了kk文献求助
3秒前
Dsk5发布了新的文献求助10
3秒前
天天快乐应助丁浩添采纳,获得10
3秒前
~Dreamboat发布了新的文献求助10
4秒前
爱咋咋地发布了新的文献求助10
4秒前
充电宝应助卷卷采纳,获得10
4秒前
Liu发布了新的文献求助10
4秒前
复杂真发布了新的文献求助10
5秒前
橘子橙子发布了新的文献求助10
6秒前
6秒前
文正熊发布了新的文献求助10
6秒前
天天快乐应助认真的画板采纳,获得10
6秒前
dropofwater发布了新的文献求助30
7秒前
代渺完成签到,获得积分10
7秒前
风色四叶草完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
qdr发布了新的文献求助30
7秒前
36456657应助哦耶采纳,获得10
8秒前
8秒前
怕孤独的香蕉完成签到,获得积分10
8秒前
zg发布了新的文献求助10
8秒前
8秒前
9秒前
baobaoxiong完成签到,获得积分10
9秒前
9秒前
9秒前
隐形曼青应助雨碎寒江采纳,获得10
9秒前
1111111完成签到,获得积分10
11秒前
曦颜完成签到 ,获得积分10
11秒前
11秒前
三三发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386