Deep Learning–Based H-Score Quantification of Immunohistochemistry-Stained Images

免疫组织化学 染色 H&E染色 人工智能 病理 数字化病理学 像素 污渍 计算机科学 医学 模式识别(心理学)
作者
Zhuoyu Wen,Danni Luo,Shidan Wang,Ruichen Rong,Bret M. Evers,Liwei Jia,Yisheng Fang,Elena V. Daoud,Shengjie Yang,Zifan Gu,Emily N. Arner,Cheryl Lewis,Luisa M. Solis Soto,Junya Fujimoto,Carmen Behrens,Ignacio I. Wistuba,Donghan M. Yang,Rolf A. Brekken,Kathryn A. O’Donnell,Yang Xie,Guanghua Xiao
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:37 (2): 100398-100398 被引量:7
标识
DOI:10.1016/j.modpat.2023.100398
摘要

Immunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region. Traditionally, this process requires evaluation by 2 expert pathologists, which is both time consuming and subjective. To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm for quantifying the H-score of IHC images. To characterize protein expression in specific cell regions, a deep learning model for region recognition was trained based on hematoxylin staining only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong staining and calculates the final H-score based on the percentage of each intensity category. Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides H-score quantification with precision and consistency comparable to experienced pathologists but at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to advance biomedical research reliant on IHC staining for protein expression quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路人完成签到,获得积分0
2秒前
Eric完成签到,获得积分10
3秒前
上善若水完成签到 ,获得积分10
5秒前
封迎松完成签到 ,获得积分10
7秒前
青菜完成签到,获得积分10
11秒前
你怎么睡得着觉完成签到,获得积分10
11秒前
11秒前
gjx完成签到 ,获得积分10
12秒前
luoyukejing完成签到,获得积分10
12秒前
欢喜板凳完成签到 ,获得积分10
12秒前
小二郎应助Scorpio采纳,获得10
13秒前
Zyl完成签到 ,获得积分10
13秒前
yyy完成签到 ,获得积分10
16秒前
16秒前
young完成签到 ,获得积分10
16秒前
听寒完成签到,获得积分10
18秒前
糖糖发布了新的文献求助10
21秒前
wazza发布了新的文献求助10
21秒前
激昂的秀发完成签到,获得积分10
23秒前
26秒前
ylky完成签到 ,获得积分10
26秒前
27秒前
鱼圆杂铺完成签到,获得积分10
27秒前
qzp完成签到 ,获得积分10
27秒前
Scorpio发布了新的文献求助10
30秒前
柠檬01210完成签到,获得积分10
30秒前
材1完成签到 ,获得积分10
32秒前
slsdianzi完成签到,获得积分10
33秒前
林梓完成签到 ,获得积分10
34秒前
LYZ完成签到,获得积分10
35秒前
hjygzv完成签到,获得积分10
35秒前
wazza完成签到,获得积分10
35秒前
Scorpio完成签到,获得积分10
35秒前
荔枝完成签到 ,获得积分10
36秒前
爆米花应助那时年少采纳,获得10
39秒前
嫁个养熊猫的完成签到 ,获得积分10
40秒前
42秒前
久9完成签到 ,获得积分10
45秒前
晨曦完成签到,获得积分10
48秒前
hhllhh完成签到,获得积分10
49秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003680
捐赠科研通 2993729
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944