已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mitigating Poor Data Quality Impact with Federated Unlearning for Human-Centric Metaverse

计算机科学 质量(理念) 虚拟实境 数据科学 人机交互 虚拟现实 哲学 认识论
作者
Pengfei Wang,Heng Qi,Qiang Zhang,Shaohua Wan,Yunming Xiao,Geng Sun,Qiang Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 832-849 被引量:1
标识
DOI:10.1109/jsac.2023.3345388
摘要

Federated Learning (FL), which has been employed to train machine learning models on the data with a distributed manner, could enhance the immersive user experience for the human-centric metaverse. However, it's challenging to train machine learning models accurately and promptly with FL for the human-centric metaverse due to massive data communication and user unreliability. User experience could be negatively affected by using low-quality machine learning models for human-centric metaverse, e.g., it cannot scrutinize and arrive at decisions accurately and timely. To resolve this pressing issue, we propose MetaFul a federated unlearning solution which reduces the negative influences of low-quality data with no data transmission by removing low-quality training models at the server side. To be specific, MetaFul includes three main components. (i) Low-throughput federated learning (LT-FL) addresses the issue of large model transmission in FL by decreasing the dimension and the number of transmitted model parameters. (ii) Loss-based model quality assessment (LM-QA) utilizes the model loss generated in LT-FL to estimate user data quality. (iii) Non-communicative federated unlearning (NC-FUL) revokes the low-quality data impact on the FL model with careful designed federated unlearning at the server side. Both LM-QA and NC-FUL have no communications with clients. Finally, extensive evaluations are conducted to show MetaFul could improve the model accuracy by at least 2.5% and decrease the user perception time by at least 19.3% in human-centric metaverse compared to benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
容易饱发布了新的文献求助10
1秒前
传奇完成签到 ,获得积分10
1秒前
Russia完成签到 ,获得积分10
4秒前
平常的凡白完成签到 ,获得积分10
5秒前
Edward完成签到 ,获得积分10
6秒前
南波万关注了科研通微信公众号
6秒前
6秒前
在水一方应助hyx-dentist采纳,获得10
6秒前
houfei发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
丘比特应助年糕采纳,获得10
11秒前
温馨家园完成签到 ,获得积分10
12秒前
锋芒不毕露完成签到,获得积分10
12秒前
ren发布了新的文献求助30
13秒前
14秒前
小小鹅发布了新的文献求助10
15秒前
15秒前
CipherSage应助容易饱采纳,获得10
16秒前
汉堡包应助dasaber采纳,获得10
16秒前
17秒前
康康发布了新的文献求助10
19秒前
hyx-dentist发布了新的文献求助10
20秒前
钱来完成签到,获得积分10
21秒前
Chawee发布了新的文献求助10
21秒前
21秒前
kaki发布了新的文献求助10
22秒前
赎罪完成签到 ,获得积分10
23秒前
容易饱完成签到,获得积分10
24秒前
Wan发布了新的文献求助10
25秒前
serendipity完成签到 ,获得积分10
25秒前
南波万发布了新的文献求助30
28秒前
gk123kk完成签到,获得积分10
30秒前
ZHANG完成签到 ,获得积分10
30秒前
kaki完成签到,获得积分10
32秒前
32秒前
Chawee完成签到,获得积分10
33秒前
英俊的铭应助dasaber采纳,获得10
33秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793439
关于积分的说明 7806660
捐赠科研通 2449725
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309