Mitigating Poor Data Quality Impact with Federated Unlearning for Human-Centric Metaverse

计算机科学 质量(理念) 虚拟实境 联合学习 人工智能 人机交互 虚拟现实 哲学 认识论
作者
Pengfei Wang,Zongzheng Wei,Heng Qi,Shaohua Wan,Yunming Xiao,Geng Sun,Qiang Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 832-849 被引量:12
标识
DOI:10.1109/jsac.2023.3345388
摘要

Federated Learning (FL), which has been employed to train machine learning models on the data with a distributed manner, could enhance the immersive user experience for the human-centric metaverse. However, it's challenging to train machine learning models accurately and promptly with FL for the human-centric metaverse due to massive data communication and user unreliability. User experience could be negatively affected by using low-quality machine learning models for human-centric metaverse, e.g., it cannot scrutinize and arrive at decisions accurately and timely. To resolve this pressing issue, we propose MetaFul a federated unlearning solution which reduces the negative influences of low-quality data with no data transmission by removing low-quality training models at the server side. To be specific, MetaFul includes three main components. (i) Low-throughput federated learning (LT-FL) addresses the issue of large model transmission in FL by decreasing the dimension and the number of transmitted model parameters. (ii) Loss-based model quality assessment (LM-QA) utilizes the model loss generated in LT-FL to estimate user data quality. (iii) Non-communicative federated unlearning (NC-FUL) revokes the low-quality data impact on the FL model with careful designed federated unlearning at the server side. Both LM-QA and NC-FUL have no communications with clients. Finally, extensive evaluations are conducted to show MetaFul could improve the model accuracy by at least 2.5% and decrease the user perception time by at least 19.3% in human-centric metaverse compared to benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘子迪完成签到,获得积分10
刚刚
clyhg完成签到,获得积分10
刚刚
chenzi完成签到 ,获得积分10
1秒前
俏皮芹完成签到,获得积分10
1秒前
1秒前
you发布了新的文献求助10
1秒前
微光关注了科研通微信公众号
2秒前
2秒前
Sunziy完成签到,获得积分10
3秒前
坨子完成签到,获得积分10
3秒前
不安青牛发布了新的文献求助10
3秒前
梦醒时见你完成签到,获得积分10
3秒前
水水完成签到,获得积分10
4秒前
文静千凡完成签到,获得积分10
4秒前
illusion完成签到,获得积分10
4秒前
聪慧尔白完成签到,获得积分10
5秒前
5秒前
罗山柳完成签到,获得积分10
6秒前
6秒前
666发布了新的文献求助10
6秒前
希望天下0贩的0应助handan采纳,获得10
7秒前
yx_cheng应助Flipped采纳,获得10
7秒前
7秒前
小赵发布了新的文献求助10
7秒前
8秒前
new发布了新的文献求助10
8秒前
季双洋发布了新的文献求助10
8秒前
cincrady完成签到,获得积分10
8秒前
9秒前
传奇3应助BWZ采纳,获得10
9秒前
善学以致用应助哭泣代容采纳,获得10
10秒前
小爱发布了新的文献求助10
10秒前
10秒前
彭于晏应助怡然平萱采纳,获得10
10秒前
wzj发布了新的文献求助10
11秒前
冥冥之极为昭昭应助小赵采纳,获得10
12秒前
开朗访曼应助小赵采纳,获得10
12秒前
yuzhi完成签到,获得积分10
12秒前
俏皮芹发布了新的文献求助10
12秒前
野性的听双完成签到 ,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301