化学
傅里叶变换红外光谱
动态光散射
磁性纳米粒子
离子液体
透射电子显微镜
纳米颗粒
拉曼光谱
细胞色素c
离子强度
化学工程
纳米技术
分析化学(期刊)
材料科学
物理化学
有机化学
催化作用
生物化学
线粒体
物理
光学
水溶液
工程类
作者
Deepak Chahar,Indrani Jha,Arumugam Jayamani,Pannuru Venkatesu
出处
期刊:ACS applied bio materials
[American Chemical Society]
日期:2024-01-23
卷期号:7 (2): 1135-1145
被引量:2
标识
DOI:10.1021/acsabm.3c01052
摘要
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4–CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4–CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4–CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi–Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4–CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI