Multi-level adaptive photon cloud noise filtering algorithm for different observation time scenes in forest environments

遥感 计算机科学 噪音(视频) 算法 云计算 中值滤波器 环境科学 白天 光子计数 地图集(解剖学) 人工智能 图像处理 地质学 图像(数学) 探测器 大气科学 操作系统 古生物学 电信
作者
Jiapeng Huang,Tingting Xia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tgrs.2023.3347401
摘要

Advanced Topographic Laser Altimeter System (ATLAS) is a new micro-pulse photon-counting laser system that offers unprecedented options for the observation of forest ecosystems. However, the ATLAS system is sensitive to solar background noise, which poses a tremendous challenge to the photon cloud noise filtering for various observation time scenes in a forest environment. This paper presents a multi-level adaptive photon cloud filtering algorithm (MLAPCNF) for different observation time scenes that integrate the improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and the improved localized statistics algorithm. The MLAPCNF algorithm was tested at different observation time scenarios, laser intensities, and forest coverage using the ATLAS dataset for forests located in nine study areas in the USA. The results showed that the MLAPCNF algorithm was effective in identifying noise photons and preserving signal photons in the raw ATLAS data with an R-value of 0.99, and F-value of 0.79 which produced marginally superior results than the other existing filtering methods. The F values of the MLAPCNF algorithm under daytime observation conditions were 0.01-0.03 higher than those under nighttime observation conditions, indicating that the algorithm performed better under daytime observation conditions. Results demonstrated that the proposed method can eliminate the impact of observation time differences in forest environments. Overall, the MLAPCNF algorithm outperforms the other existing filtering techniques at the given test site and is capable of delivering accurate data for estimating forest structural parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
本杰明发布了新的文献求助10
1秒前
润润轩轩发布了新的文献求助10
1秒前
1秒前
共享精神应助烧烤采纳,获得10
2秒前
酒酿是也完成签到 ,获得积分10
2秒前
H71000A完成签到 ,获得积分10
2秒前
文章多多完成签到 ,获得积分10
2秒前
2秒前
bwbw发布了新的文献求助10
3秒前
华仔应助Lvj采纳,获得10
3秒前
我是老大应助灵巧的坤采纳,获得10
3秒前
4秒前
wwwwyyyy完成签到,获得积分10
4秒前
hbb完成签到,获得积分10
4秒前
故意的傲玉应助韭菜采纳,获得10
4秒前
慕青应助脆弱的仙人掌采纳,获得10
4秒前
SY发布了新的文献求助10
4秒前
Libeau完成签到,获得积分10
4秒前
科研通AI5应助嘉禾望岗采纳,获得10
4秒前
凝安完成签到 ,获得积分10
5秒前
英姑应助Harlotte采纳,获得10
5秒前
双勾玉发布了新的文献求助10
6秒前
Owen应助gaos采纳,获得10
6秒前
6秒前
6秒前
QXS发布了新的文献求助10
7秒前
7秒前
充电宝应助乖猴猴采纳,获得10
7秒前
迟大猫应助VDC采纳,获得10
8秒前
Jenny应助故意的寒安采纳,获得10
8秒前
本杰明完成签到,获得积分10
8秒前
大树发布了新的文献求助10
9秒前
在望完成签到,获得积分10
9秒前
April完成签到 ,获得积分10
9秒前
9秒前
FashionBoy应助成哥采纳,获得10
9秒前
NexusExplorer应助研友_8yN60L采纳,获得30
10秒前
蒋时晏应助Aria采纳,获得30
10秒前
科研通AI5应助哒哒猪采纳,获得10
10秒前
左手天下完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759