Identifying autism using EEG: unleashing the power of feature selection and machine learning

神经质的 人工智能 计算机科学 机器学习 特征选择 预处理器 自闭症 自闭症谱系障碍 鉴定(生物学) 支持向量机 脑电图 人工神经网络 模式识别(心理学) 心理学 发展心理学 植物 精神科 生物
作者
Anamika Ranaut,Padmavati Khandnor,Trilok Chand
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035013-035013
标识
DOI:10.1088/2057-1976/ad31fb
摘要

Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that is characterized by communication barriers, societal disengagement, and monotonous actions. Currently, the diagnosis of ASD is made by experts through a subjective and time-consuming qualitative behavioural examination using internationally recognized descriptive standards. In this paper, we present an EEG-based three-phase novel approach comprising 29 autistic subjects and 30 neurotypical people. In the first phase, preprocessing of data is performed from which we derived one continuous dataset and four condition-based datasets to determine the role of each dataset in the identification of autism from neurotypical people. In the second phase, time-domain and morphological features were extracted and four different feature selection techniques were applied. In the last phase, five-fold cross-validation is used to evaluate six different machine learning models based on the performance metrics and computational efficiency. The neural network outperformed when trained with maximum relevance and minimum redundancy (MRMR) algorithm on the continuous dataset with 98.10% validation accuracy and 0.9994 area under the curve (AUC) value for model validation, and 98.43% testing accuracy and AUC test value of 0.9998. The decision tree overall performed the second best in terms of computational efficiency and performance accuracy. The results indicate that EEG-based machine learning models have the potential for ASD identification from neurotypical people with a more objective and reliable method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼醉山完成签到,获得积分10
刚刚
ww发布了新的文献求助10
刚刚
爱因斯宣发布了新的文献求助10
刚刚
吃饱饱完成签到 ,获得积分10
1秒前
光速蜗牛完成签到,获得积分10
1秒前
1秒前
无语的钢铁侠完成签到,获得积分10
2秒前
大气的天蓝完成签到,获得积分10
2秒前
慕青应助hyjhhy采纳,获得10
2秒前
大罗完成签到,获得积分10
2秒前
2秒前
黄慶玲发布了新的文献求助10
3秒前
3秒前
生动元龙发布了新的文献求助10
3秒前
agont完成签到,获得积分10
4秒前
4秒前
幽默的小之完成签到,获得积分10
4秒前
辶车完成签到,获得积分10
5秒前
顾矜应助小右采纳,获得10
5秒前
小叮当完成签到,获得积分10
5秒前
诸葛凤雏完成签到,获得积分10
6秒前
涛哥发布了新的文献求助10
6秒前
英俊的铭应助tt采纳,获得10
7秒前
7秒前
毛毛发布了新的文献求助30
7秒前
7秒前
shizi完成签到,获得积分10
7秒前
陆上飞完成签到,获得积分10
8秒前
善学以致用应助洛苓轩采纳,获得10
8秒前
8秒前
呜呜哇哇发布了新的文献求助10
8秒前
9秒前
dryao完成签到,获得积分10
9秒前
9秒前
10秒前
Jiaming完成签到,获得积分10
10秒前
10秒前
笑一下蒜了完成签到,获得积分10
10秒前
yao完成签到,获得积分10
11秒前
zhuangxiong完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118