Identifying autism using EEG: unleashing the power of feature selection and machine learning

神经质的 人工智能 计算机科学 机器学习 特征选择 预处理器 自闭症 自闭症谱系障碍 鉴定(生物学) 支持向量机 脑电图 人工神经网络 模式识别(心理学) 心理学 精神科 发展心理学 生物 植物
作者
Anamika Ranaut,Padmavati Khandnor,Trilok Chand
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035013-035013
标识
DOI:10.1088/2057-1976/ad31fb
摘要

Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that is characterized by communication barriers, societal disengagement, and monotonous actions. Currently, the diagnosis of ASD is made by experts through a subjective and time-consuming qualitative behavioural examination using internationally recognized descriptive standards. In this paper, we present an EEG-based three-phase novel approach comprising 29 autistic subjects and 30 neurotypical people. In the first phase, preprocessing of data is performed from which we derived one continuous dataset and four condition-based datasets to determine the role of each dataset in the identification of autism from neurotypical people. In the second phase, time-domain and morphological features were extracted and four different feature selection techniques were applied. In the last phase, five-fold cross-validation is used to evaluate six different machine learning models based on the performance metrics and computational efficiency. The neural network outperformed when trained with maximum relevance and minimum redundancy (MRMR) algorithm on the continuous dataset with 98.10% validation accuracy and 0.9994 area under the curve (AUC) value for model validation, and 98.43% testing accuracy and AUC test value of 0.9998. The decision tree overall performed the second best in terms of computational efficiency and performance accuracy. The results indicate that EEG-based machine learning models have the potential for ASD identification from neurotypical people with a more objective and reliable method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助初之采纳,获得10
1秒前
te发布了新的文献求助10
1秒前
边港洋完成签到,获得积分10
3秒前
3秒前
凤羽发布了新的文献求助10
4秒前
灵巧听露发布了新的文献求助10
4秒前
可爱的函函应助猫猫无敌采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
爆米花应助刁弘睿采纳,获得10
8秒前
8秒前
8秒前
缥缈海云完成签到,获得积分10
8秒前
9秒前
斯文败类应助沙场秋点兵采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
11秒前
无辜问玉发布了新的文献求助10
11秒前
11秒前
12秒前
谨慎乐安发布了新的文献求助10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
缥缈海云发布了新的文献求助10
15秒前
mylaodao发布了新的文献求助10
15秒前
16秒前
chen完成签到,获得积分10
17秒前
拾贰月发布了新的文献求助10
17秒前
俊杰完成签到,获得积分10
18秒前
阿菜完成签到,获得积分10
18秒前
wanghao完成签到,获得积分20
18秒前
善学以致用应助songjiatian采纳,获得10
19秒前
20秒前
20秒前
善学以致用应助追忆淮采纳,获得10
21秒前
Hello应助靓丽凝海采纳,获得10
21秒前
21秒前
毛笑冉完成签到,获得积分10
21秒前
fine发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425