Identifying autism using EEG: unleashing the power of feature selection and machine learning

神经质的 人工智能 计算机科学 机器学习 特征选择 预处理器 自闭症 自闭症谱系障碍 鉴定(生物学) 支持向量机 脑电图 人工神经网络 模式识别(心理学) 心理学 精神科 发展心理学 生物 植物
作者
Anamika Ranaut,Padmavati Khandnor,Trilok Chand
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035013-035013
标识
DOI:10.1088/2057-1976/ad31fb
摘要

Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that is characterized by communication barriers, societal disengagement, and monotonous actions. Currently, the diagnosis of ASD is made by experts through a subjective and time-consuming qualitative behavioural examination using internationally recognized descriptive standards. In this paper, we present an EEG-based three-phase novel approach comprising 29 autistic subjects and 30 neurotypical people. In the first phase, preprocessing of data is performed from which we derived one continuous dataset and four condition-based datasets to determine the role of each dataset in the identification of autism from neurotypical people. In the second phase, time-domain and morphological features were extracted and four different feature selection techniques were applied. In the last phase, five-fold cross-validation is used to evaluate six different machine learning models based on the performance metrics and computational efficiency. The neural network outperformed when trained with maximum relevance and minimum redundancy (MRMR) algorithm on the continuous dataset with 98.10% validation accuracy and 0.9994 area under the curve (AUC) value for model validation, and 98.43% testing accuracy and AUC test value of 0.9998. The decision tree overall performed the second best in terms of computational efficiency and performance accuracy. The results indicate that EEG-based machine learning models have the potential for ASD identification from neurotypical people with a more objective and reliable method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助深情的秋白采纳,获得10
1秒前
惊鸿客完成签到,获得积分10
2秒前
解语花发布了新的文献求助10
2秒前
科研通AI6应助TTT采纳,获得10
3秒前
3秒前
3秒前
Ava应助你若晴好采纳,获得10
3秒前
4秒前
4秒前
契说关注了科研通微信公众号
5秒前
6秒前
科研通AI6应助Veraphy采纳,获得10
7秒前
7秒前
顾矜应助小白采纳,获得30
8秒前
zhang完成签到 ,获得积分10
8秒前
Owen应助鸢尾蓝采纳,获得10
9秒前
ME完成签到,获得积分20
9秒前
巴木的海发布了新的文献求助10
10秒前
小白完成签到,获得积分10
10秒前
及禾发布了新的文献求助10
10秒前
64658应助火星上的听莲采纳,获得10
10秒前
科研通AI6应助j_lan采纳,获得10
11秒前
1111完成签到,获得积分10
12秒前
若兰完成签到,获得积分10
12秒前
dandan完成签到,获得积分20
13秒前
13秒前
在水一方应助柳大宝采纳,获得10
15秒前
15秒前
充电宝应助ji采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
若兰发布了新的文献求助10
17秒前
英姑应助xcont采纳,获得10
17秒前
17秒前
完美世界应助aaaaa采纳,获得10
17秒前
17秒前
gao发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004977
求助须知:如何正确求助?哪些是违规求助? 4248789
关于积分的说明 13238374
捐赠科研通 4048287
什么是DOI,文献DOI怎么找? 2214827
邀请新用户注册赠送积分活动 1224695
关于科研通互助平台的介绍 1145141