泡沫电池
巨噬细胞
CD36
细胞生物学
下调和上调
化学
GNAS复合轨迹
分子生物学
生物
受体
生物化学
体外
基因
作者
Chang Ma,Yihui Li,Mi Tian,Qiming Deng,Qin Xiaoteng,Hanlin Lu,Jiangang Gao,Min Chen,Lee S. Weinstein,Mei Zhang,Peili Bu,Jianmin Yang,Yun Zhang,Cheng Zhang,Wencheng Zhang
标识
DOI:10.1161/circresaha.123.323156
摘要
Background: Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. Methods: High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-Gsα KO ) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. Results: ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta’s cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPβ phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-Gsα KO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. Conclusions: Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI